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Abstract— Human activity recognition (HAR) plays a critical
role in diverse applications and domains, from assessments of
ambient assistive living (AAL) settings and the development
of smart environments to human-robot interaction (HRI) sce-
narios. However, using mobile robot cameras in such contexts
has limitations like restricted field of view and possible noise.
Therefore, employing additional fixed cameras can enhance
the field of view and reduce susceptibility to noise. Never-
theless, integrating additional camera perspectives increases
complexity, a concern exacerbated by the number of real-time
processes that robots should perform in the AAL scenario. This
paper introduces our methodology that facilitates combination
of multiple views and compares different aspects of fusing
information at low, medium and high levels. Their comparison is
guided by parameters such as number of training parameters,
floating-point operations per second (FLOPs), training time,
and accuracy. Our findings uncover a paradigm shift, challeng-
ing conventional beliefs by demonstrating that simplistic CNN
models outperform their more complex counterparts using this
innovation. Additionally, the pivotal role of pipeline and data
combination emerges as a crucial factor in achieving better
accuracy levels. Ultimately, we have successfully attained a
streamlined and efficient multi-view HAR pipeline, which will
now be incorporated into AAL interaction scenarios.

I. INTRODUCTION

Human activity recognition (HAR) has attract significant
attention in recent years due to its wide range of appli-
cations, for example, in assistive technology or human-
robot interaction (HRI) [1], [2]. The development of large
datasets, multimodal sensor fusion techniques, and deep
learning architectures has contributed to the progress and
effectiveness of vision-based HAR systems [3], [2].

Ambient assisted living (AAL) technology has emerged
as a promising approach to address the challenges faced by
many older adults in maintaining their independence and
quality of life [4], [5]. AAL systems are designed to be
integrated into the daily environment of individuals, pro-
viding sensitive and responsive services [6]. These systems
aim to aid individuals in various aspects, including handling
future interfaces, recognizing frailty and mobility, preventing
accidents, and supporting daily living [7], [8], [9].

In order to achieve sufficiently advanced perception capa-
bilities, these assistive robots must be able to execute multi-
ple tasks concurrently. Take, for example, a robot navigating
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an indoor environment. It must simultaneously monitor hu-
man activities, listen to commands, analyze behavior, detect
and manipulate objects for the benefit of individuals, while
also ensuring collision avoidance and managing unforeseen
situations. This scenario exemplifies the multifaceted nature
of a robot’s role, involving the simultaneous execution of
numerous tasks that demand efficient processing. However,
this need for multitasking introduces significant computa-
tional constraints.

Furthermore, while the utilization of mobile robot cameras
in these contexts offers various advantages, such as providing
closer perspectives and the ability to follow humans, it also
introduces certain limitations. These limitations include a
restricted perspective and the possibility of noise, due to
movement, in the captured data [10]. One potential solution
to mitigate these challenges is the integration of additional
camera perspectives alongside the robot’s own viewpoint.
However, when obtaining multiple perspectives from the
robot, such as through cameras placed at various positions
like the head and body, we encounter the drawback of
heightened computational demands on an assistive robot.
Potential solutions include employing high-performance ma-
chines locally within the environment or offloading compu-
tations to the cloud, exemplified by CloudMind1 services.
Another option involves utilizing static cameras within the
robot workspace to capture supplementary perspectives and
investigate strategies that can optimize and streamline HAR
methods.

In this context, our investigation involves the evaluation
of various renowned CNN models and benchmarking them
with an AAL dataset, with a keen focus on essential factors,
including the number of training parameters, floating-point
operations per second (FLOPs), as well as training time
and accuracy. Subsequently, by comparing data combination
methods at low, middle and high levels, we unveil an
effective and optimized multi-view architecture.

A. Research objectives

This work is focused on attaining the following objectives:
1) Improving robot perception through the development

of a multi-view human activity recognition pipeline in
the ambient assisted living domain.

2) Analyze the trade-offs between model complexity and
accuracy by evaluating diverse CNN models on an
AAL dataset and optimizing a multi-view architecture.

1https://www.cloudminds.com/en

https://www.cloudminds.com/en


To contextualize our approach, we provide related work in
Sec. II, which considers the concepts of multi-view configu-
rations. In Sec. III, we introduce the Multi-View CNN-based
HAR architectures, utilizing data from the AAL dataset.
Following that in Sec. IV we examine different MV methods
in terms of efficiency and effectiveness. Then, in Sec. V
discuss over the results and achievements and summarise the
key findings and contributions.

II. RELATED WORK

A. Multi-view Learning

The multi-view concept, as discussed in [11], involves
utilizing multiple perspectives or representations of the same
data to enhance the learning process. In traditional machine
learning approaches, a single view of the data is used, which
may limit the model’s ability to capture the underlying pat-
terns and relationships. Multi-view learning covers various
aspects including representation learning [12], [13], feature
selection [14], [12], and fusion methods [15], [16], [17].

The importance of the multi-view concept lies in its ability
to provide a more comprehensive understanding and repre-
sentation of complex and high-dimensional data [18]. By
considering different views, the model can capture different
aspects and nuances of the data, leading to improved accu-
racy [11] and generalization [19], [20]. The applications
of the multi-view concept are wide-ranging. In computer
vision, for example, multi-view learning can be applied
to object recognition tasks, where different views of an
object (e.g., different angles or lighting conditions) can be
leveraged to improve recognition accuracy [12]. In natural
language processing, multi-view learning can be used for
sentiment analysis, where different views of textual data
(e.g., word embeddings, syntactic structures) can provide a
more comprehensive understanding of sentiment [13]. In this
work, we augment the robotic perspective by incorporating
supplementary cameras observing the same human subject
engaged in indoor activities.

B. Multi-view CNNs

CNNs excel in domains like image classification [21],
[22]. However, single-view CNN architectures may not fully
utilize the multi-view information available in the target
data. To address this limitation, multi-view architectures
aim to integrate information from different views of the
same data to obtain more discriminative and comprehensive
representations [23].

There are two main types of multi-view CNN archi-
tectures: the one-view-one-net and the multi-view-one-net
mechanisms [11]. In the one-view-one-net mechanism, each
view is processed by a separate CNN, and the outputs
are combined to obtain the final representation [11]. On
the other hand, the multi-view-one-net mechanism models
multiple feature sets together and aims to learn a common
representation that captures the multi-view information [11].

Several studies have explored the application of multi-
view CNNs in different domains. For example, in 3D shape
recognition, multi-view CNNs have been used to model

multiple views of 3D shapes and achieve better recognition
performance [23]. In multivariate electroencephalography
(EEG), multi-view CNNs have been employed to integrate
information from multiple electrodes and improve classifi-
cation accuracy [24]. Additionally, multi-view CNNs have
been applied to tasks such as multi-feature aggregation [25]
and lung nodule classification [26].

The design of multi-view CNN architectures involves var-
ious parameter optimization techniques [23]. For instance,
the use of attention mechanisms, such as SoftPool attention,
has been proposed to enhance the feature extraction and
classification process [24]. Another approach is the fusion
of spatial and temporal networks at different layers, which
has been shown to improve performance while reducing the
number of parameters [27].

Despite the strides made in multi-view CNNs, there remain
critical gaps in the existing research, prompting further
exploration. Firstly, there is no current comparison of various
multi-view HAR approaches employing CNN methodologies
to assess their performance. Furthermore, when multiple
perspectives are introduced simultaneously, it substantially
increases the overall complexity of the models an area.
Notably, extending the concept of multi-view CNNs into the
realm of activity recognition may compound this complexity.
Furthermore, the research landscape has seen limited inves-
tigation into the optimal utilization of CNN models in the
context of MV-HAR.

Hence, the present work seeks to bridge these gaps by
presenting a comprehensive comparison of CNN methods,
while investigating the effects of incorporating additional
views on the model’s efficiency. The aim is to formulate
an optimized pipeline addressing these challenges.

III. MULTI-VIEW CNN-BASED HAR ARCHITECTURES

In this section we systematically deconstruct the multi-
view learning (MVL) structures employed and introduced in
our study. Including the dataset specifications in Sec. III-A,
the establishment of the multi-view CNN models Sec. III-B,
feature level fusion, and the multi-view co-learning methods.
Collectively, these components compose a comprehensive
pipeline crucial for deploying the multi-view HAR bench-
mark and evaluating models across various variables.

A. AAL multi-view dataset

In order to effectively address the recognition of human
activities based on skeletal data with multiple perspective
in ambient assistive living scenarios, where a robot is also
involved, it is crucial to select a dataset that encompasses
all relevant variables. After careful consideration, we opted
for the RHM-HAR-SK dataset [28], an extension of the
RHM RGB data [29]. This dataset offers several advantages,
primarily focusing on the classification of multi-view human
activities, comprising trimmed videos from four distinct
cameras: two wall-mounted (Front-view and Back-view), a
mobile robot (Robot-view), and a ceiling fish-eye camera
(Omni-view). These cameras’ strategic placement ensures
comprehensive coverage of a typical living room, creating



overlapping views. Notably, the inclusion of a robot view
in this dataset renders it particularly valuable for AAL
scenarios, involving situations where a robot observes and
follows human activities in different locations.

A prior analysis conducted by [28] on the dataset reveals
that the Omni-view exhibits low accuracy, characterized by
a high number of missed poses and frames. Consequently,
we opt not to incorporate the Omni-view data in our current
work.

Furthermore, the RHM-HAR-SK dataset encompasses a
diverse range of activity classes, a key aspect influenced
by research conducted by Bedaf et al. [30]. Their study
focused on identifying crucial daily activities that were
essential for independent living. The dataset captures a total
of fourteen daily activities captured indoor, underscoring the
potential advantages that companion robots and ambient-
assistive systems can offer if they can successfully detect
and interpret these activities.

Capturing the spatial and temporal changes of a human
skeleton within a video stream is of paramount importance,
as it allows us to preserve intricate details of human body
movements. We adopt a method similar to the one developed
by [31], wherein the data is converted into a 3 × 34 × 34
tensor, a format carefully designed to accommodate these
requirements.

B. Multi-view CNN configurations

At the heart of our framework lies the integration of
information derived from diverse perspectives. To achieve
this objective and gain a deeper understanding of crafting
an effective and efficient structure, we adopt a systematic
approach. This method involves combining data at various
stages of the HAR pipeline: at the feature level Sec.III-B.1,
during the batch-level training process Sec. III-B.2, at the
high-level probability stage Sec. III-B.3, and through a com-
bination of the last two levels Sec. III-B.4. In the Sec. II-B,
we introduced two primary structures for Multi-View CNN,
namely the ”one-view-one-net” mechanism and the ”multi-
view-one-net” mechanism. We place specific emphasis on
the ”multi-view-one-net” mechanism, where all input data is
learned by a single model. The lightweight and less complex
nature of this approach is a crucial feature, contributing to
the overall streamlined design of the framework by having
only one model.

1) Multi-view low-level fusion: To implement feature
level or low level fusion, the tensor data extracted from the
initial stage of the HAR process is input into the classifica-
tion model. In this context, our approach draws inspiration
from the methodology outlined in [31], where each input
camera view, represented as a tensor file as previously
described in Sec. III-A, is treated as an individual input
channel. In practical terms, if we consider, for instance, three
camera views, the model’s input configuration is adjusted
to accommodate three channels, and subsequent training,
validation, and testing procedures are conducted accordingly.

The advantage of this fusion method lies in its simplicity.
For instance, we can apply standard image classification
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Fig. 1. The structure of high-level multi-view co-learning. Input data
(34 × 34 tensor) from the same subject is sequentially fed into a single
model. After obtaining the average output from all inputs (represented by
a specific colour), the resultant output is used in the subsequent training or
performance processes.

techniques without any modification for the three input
channels, effectively processing them as RGB data. However,
it’s important to acknowledge the potential drawback: The
fusion of input data does not encompass feature extraction
beyond the initial transformation of human joints data into
the tensor.

2) Multi-view mid-level co-learning: An approach that
we introduce to combine all views involves utilizing input
data from all perspectives during the training and validation
process. This approach is termedmulti-view (MV) mid-level
(MD) co-learning. In other words, since we are using multi-
view-one-net architecture, each batch of multi-view input
data undergoes the training, validation, and testing processes
collectively. Let DR, DB , and DF represent the training
datasets for the Robot, Back, and Front views, respectively.
Each training dataset is divided into M batches. Within each
batch i, and for each view j, the training process updates
the model’s parameters W based on the respective view’s
data. Since there is only one model, through each view
input, the model weights will update for next view. This
process repeats for all views j (j = 1, 2, . . . , v) within each
batch i (i = 1, 2, . . . ,m) for each epoch. The ∇L(Xi

j ,W, b)
represents the gradient of the loss function L with respect to
the weights W calculated on that batch.

3) Multi-view high-level co-learning: In this MV high-
level co-learning method, we combine multiple views at
the highest level of the pipeline, using only the average
output in the learning process. This is distinct from mid-level
co-learning, which involves individual view outputs in the
learning process. However, similar to mid-level co-learning,
this method follows the multi-view-one-net structure, as
depicted in Figure 1 for MV-HG co-learning.

Let V1, V2, . . . , Vv represent the views (e.g., Robot, Back,
Front) for a given dataset. Each view has a set of outputs,
O1, O2, . . . , Ov , where Oj is the set of outputs for view Vj .
For the MV High-level Co-learning approach, the learning
process involves averaging the predictions from all views.
This can be mathematically expressed as:

Oavg =
1

v

v∑
j=1

Oj (1)

Where:
• Oavg represents the average predictions for all views.



• v is the total number of views.
• Oj is the set of predictions for view Vj .
This process involves obtaining the average predictions,

Oavg, which is then used for further learning and model
updates.

4) Combining multi-view mid-level and high-level co-
learning: The limitation in the employment of the MD
method manifests in the inability to concurrently harness the
outputs from all perspectives within the one-net structure.
However, leveraging the multi-view-one-net architecture in
both mid-level and high-level co-learning methodologies
enables us to combine the advantages of both approaches.
We first employ mid-level training to enhance the model’s
training and validation process and subsequently perform
test set classification using the high-level combination. This
strategy involves training and validating the model with a
more diverse data and testing it using the average of pre-
dictions. This approach enhances the single model’s training
process by enriching it with diverse input data through mid-
level co-learning. It further capitalizes on high-level co-
learning during the model’s performance stage. To prevent
the over-fitting issue the test data has been separated from
the training and validation in both Mid and high level co-
learning methods.

IV. EXPERIMENTS

This section presents a number of experiments and their
results obtained as well as analysis focusing on compara-
tive model performance. As established state-of-the art and
each representing a distinct architecture, we compare the
following CNN models in our experiment: LeNet, M-LeNet,
ResNet18, MobileNet, SqueezNet, DenseNet, and MnasNet.
To measure model performance as a dependent variable, we
compared the recognition accuracy, model complexity (num-
ber of parameters), computational complexity (FLOPs), and
performance time as individual metrics. To assess potential
influences on MV frameworks’ performance, we considere
the Robot view as the base single view for improvement,
along with low-level fusion (LW), mid-level co-learning
(MD), high-level co-learning (HG), and the combined MD
and HG (MH) methods as additional independent variables
in comparing MV methods.

A. Experimental Settings

We performed individual tests for CNN models under
identical conditions, randomly sampling 34 frames from the
dataset RHM-HAR-SK [28], which integrates Yolo7 pose
estimation to extract human skeleton data. Hyperparameters
encompass a dropout rate of 0.0135, we set the learning rate
to 0.000072, with a weight decay of 0.0000521, a batch size
of 128, and a training duration spanning 128 epochs. We em-
ployed the Adam [32] optimization method, and the experi-
mental design incorporates stratified K-Fold cross-validation
with five folds to ensure a uniform distribution of classes
in each fold. Throughout the training, model performance is
assessed on a validation set after each epoch, utilizing the
cross entropy loss as the chosen loss function. The dataset is

split into training and validation sets during cross-validation,
with 20% of the data reserved for subsequent testing. We
evaluate the trained model on the test set, and key metrics,
including test loss, accuracy, precision, recall, F1-score, and
the confusion matrix, are logged for analysis. We performed
tests on a high-performance computer with the following
specifications:

• Architecture: X86 64
• CPU: AMD Ryzen Threadripper PRO 5975WX (32

Cores, 64 Threads, 7006.64 MHz)
• Graphics Card: NVIDIA GA102GL [RTXA6000]

(10,752 CUDA cores, memory size of 48 GB GDDR6)
• Storage: PC801 NVMe SK hynix 2TB SSD
• Memory: 125 GiB RAM

B. Model complexity & HAR

In this segment of our experiment, we explore the intricate
relationship between model complexity and human activity
recognition (HAR). This experiment challenges the conven-
tional belief that more complex CNN models inherently yield
superior accuracy. To test this hypothesis, we rigorously train
and test various CNN models, focusing initially on single-
view HAR with the robot view as the base perspective. The
results, as depicted in Table IV-B shows that models with
fewer parameters and complexity, such as MnasNet (77.72%)
and M-LeNet (77.14%), not only hold their own but also out-
perform single-view models even with higher parameters and
complexity, like ResNet (76.91%) and DenseNet (74.81%).

C. Views & HAR accuracy

When analysing the impact of additional views on HAR
accuracy, our primary goal is to see the effect of enhancing a
robot’s perception by introducing multiple external cameras.
The results in Sec. IV-B reveal that, except for some models
in the LW method, all other view combination frameworks
have improved the accuracy, showcasing the potential of
multi-view perspectives.

The MH method notably demonstrates the highest im-
provement, ranging from 10% to 25% across various models.
The top four highest accuracies are consistently achieved
using the MH method, with notable performances from
ResNet (90.90%), MnasNet (90.08%), DenseNet (89.93%),
and M-LeNet (88.59%).

Conversely, the HG method showcases improvement of 5
to 14 percent, with ResNet (85.25%), M-LeNet (83.95%),
and DenseNet (83.94%) securing the top spots in terms of
accuracy. Notably, SqueezeNet exhibits a remarkable jump
in accuracy within the HG framework.

For the MD method, improvements are slightly lower,
ranging from 1 to 10.5 percent, with MnasNet (82.28%),
DenseNet (81.05%), and M-LeNet (80.14%) claiming the
top accuracy spots in the MD method. However, the LW
framework’s results are less consistent, with some models
experiencing improvement and others exhibiting declines.
Despite challenges, certain models like MobileNet (76.91%)
and ResNet (76.91%) demonstrate reasonable improvement
within the LW framework.



Models Acc. (%) #Params (M) FLOPs(G)

LeNet-LW 75.91 0.062006 0.00075
LeNet-HG 79.57 0.061706 0.00048
LeNet-MD 75.87

- -LeNet-MH 84.71
LeNet-R 74.74

M-LeNet-LW 76.67 0.621364 0.00125
M-LeNet-HG 83.95 0.621184 0.00106
m-LeNet-MD 80.14

- -M-LeNet-MH 88.59
M-LeNet-R 77.14

ResNet18-LW 82.04 11.689512 0.08102
ResNet18-HG 85.25 11.177422 0.07870
ResNet18-MD 77.52

- -ResNet18-MH 90.90
ResNet18-R 76.91

MobileNet-LW 76.91 3.504872 0.01644
MobileNet-HG 70.53 2.24123 0.01501
MobileNet-MD 65.18

- -MobileNet-MH 83.59
MobileNet-R 58.76

SqueezNet-LW 55.47 1.235496 0.00791
SqueezNet-HG 76.38 0.728526 0.00559
SqueezNet-MD 73.25

- -SqueezNet-MH 86.73
SqueezNet-R 62.68

DenseNet-LW 70.72 7.978856 0.06677
DenseNet-HG 83.94 6.961934 0.06395
DenseNet-MD 81.05

- -DenseNet-MH 89.93
DenseNet-R 74.81

MnasNet-LW 35.32 2.218512 0.00702
MnasNet-HG 81.51 2.138512 0.00622
MnasNet-MD 82.28

- -MnasNet-MH 90.08
MnasNet-R 77.72

TABLE I
SUMMARY OF PERFORMANCE METRICS FOR ANALYSED CNN MODELS

IN HUMAN ACTIVITY RECOGNITION, LISTING ACCURACY AND MODEL

COMPLEXITY EXPRESSED IN NUMBER OF PARAMETERS AND

FLOATING-POINT OPERATIONS. SUFFIX STANDS FOR, LW: LOW-LEVEL

FUSION MD: MID-LEVEL CO-LEARNING HG: HIGH-LEVEL

CO-LEARNING MH: COMBINED MID-LEVEL AND HIGH-LEVEL (MD
AND HG) CO-LEARNING

D. CNNs in multi-view trade-offs

In this phase of the experiment, we investigate the varia-
tion in the trade-off between model accuracy and complexity
across different CNN architectures in the context of multi-
view HAR. Specific CNN architectures may demonstrate
superior trade-offs between accuracy and model complexity
in the multi-view HAR scenario. To identify the optimal
framework, we assess the accuracy density [33], [34], calcu-
lated as the ratio of accuracy to the number of parameters. A
higher accuracy density signifies greater efficiency. In Figure
2 we plot the top accuracy of each tested model (MH method)
against their accuracy density. The accuracy density serves
as a metric to gauge the efficiency of parameter utilization
for each model. In this figure, the run time of each model
during the training and validation processes is depicted using

 

 

Fig. 2. Accuracy density analysis for CNN models in the MH method.
The centre of the circles represents the relevant value on the axes, denoting
accuracy and accuracy density. Circle diameters correlate with the number
of parameters, while their colours reflect the time spent during the training
process.

colour mapping, varying between 6 minutes (blue) for LeNet
and 43 minutes for DenseNet (yellow).

The findings indicate that simpler models like LeNet
exhibit greater effectiveness and efficiency compared to more
complex CNN architectures such as MobileNet in the HAR
task. Despite LeNet achieving an accuracy density of nearly
1400, making it a more effective model, its accuracy falls
approximately 5% lower than the highest-performing model
(ResNet at 90.9%). However, the top three accuracy models
(ResNet, MnasNet, and DenseNet) display lower efficiency,
with an accuracy density lower than 50. Notably, among
these, DenseNet emerges as the slowest model in terms of
performance, requiring approximately 40 minutes for train-
ing. Additionally, while M-LeNet and SqueezeNet demon-
strate similar levels of efficiency, the runtime of SqueezeNet
is nearly three times longer than that of M-LeNet. This
observation highlights the direct impact of FLOPs on model
performance time, considering that the FLOPs value in
M-LeNet is approximately five times smaller than that in
SqueezeNet.

V. DISCUSSION AND CONCLUSIONS

This work presented a multi-view CNN-based human
activity recognition architecture and showed that additional
camera views can efficiently enhance robot perception in
ambient assisted living scenarios. The trade-offs between
model complexity and accuracy reveals that lightweight CNN
models like M-LeNet and MnasNet are more efficient than
complex architectures, challenging conventional beliefs.

We selected the RHM-HAR-SK dataset capturing diverse
human activities from four camera angles. Converting human
skeleton stream data into a tensor format allowed structured
representation of spatial and temporal changes. The utiliza-
tion of this input format empowered us to combine informa-



tion seamlessly through fusion, co-learning, and combination
mechanisms within the ”multi-view-one-net” architecture.

In our proposed architectures, notably the MH method, the
integration of mid-level and high-level co-learning, exhibits
promising outcomes across various CNN models, underscor-
ing the considerable potential of incorporating multi-view
information for HAR tasks. This combination surpasses the
constraints associated with mid-level methodologies, where
obtaining individual views simultaneously poses challenges.
It leverages the generalization capabilities of mid-level meth-
ods in the training phase, while simultaneously harnessing
the power of the high-level method through the aggregation
of average outputs during performance evaluation.

Our results demonstrate that a locally efficient multi-view
HAR model in a robot can effectively operate in ambient
assisted living scenarios. This effectiveness is achieved by
selecting an appropriate model like M-LeNet with low com-
plexity and a limited number of parameters, coupled with a
well-designed multi-view structure.

Methods for 2D pose extraction that can handle concurrent
processing of multiple individuals without overloading are
scalable, enabling efficient execution of multiple HAR tasks.
In future work, we will look into streamlining the skeleton-
based model for multi-person HAR deployment, ensuring
scalability to manage multiple tasks efficiently.
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