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Abstract
Human-robot interaction (HRI) programmers often struggle with
operating older robot hardware due to the short support period
provided by manufacturers and difficulties integrating modern soft-
ware solutions. This paper introduces the ZTL Task Library (ZTL),
a lightweight communication framework and protocol designed to
decouple robot hardware from the operating platform via socket
communication, thereby increasing robot lifetime. We present a
task-based communication protocol facilitating the co-design of
robot behaviours with non-programming experts. Our approach
has been shown across different platforms to effectively mitigate
incompatibilities between middlewares, simplifying control and
usability, allowing for simultaneous addressing of multiple devices.

CCS Concepts
• Human-centered computing → Systems and tools for in-
teraction design; • Software and its engineering→Message
oriented middleware; • Computer systems organization →
External interfaces for robotics.
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task-based robot control, middleware abstraction, human-robot
interaction design
ACM Reference Format:
Patrick Holthaus, Trenton Schulz, Lewis Riches, Claudia-Andreea Bade-
scu, and Farshid Amirabdollahian. 2026. ZTL: Lightweight Communication
Patterns for HRI. In Proceedings of the 21st ACM/IEEE International Confer-
ence on Human-Robot Interaction (HRI ’26), March 16–19, 2026, Edinburgh,
Scotland, UK. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3757279.3788801

1 Background and Summary
HRI researchers often face challenges deploying and keeping phys-
ical robots in operation. Often, the operating systems that com-
mercially available robots rely upon quickly reach the end of their
support lifecycle. For example, Ubuntu Xenial, used in robots like
Care-O-bot 4 or TurtleBot 3, was supported from 2016 until 2021.
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With Care-O-bot also being released in 2016, this leaves a five-year
window to procure the robot, train operators, and put the robot
to use. At the same time, roboticists need to update software to
follow new developments in evolving fields like machine learning,
artificial intelligence, and robotics. However, integrating updates is
time-consuming and can negatively impact the device’s operational
window. Sometimes, incompatibilities between the existing robot
platforms and modern solutions prevent their adoption altogether.

We present a software library to decouple older and more ex-
otic technologies from the platforms that operate them, effectively
increasing their lifetime and cost efficiency. Our approach allows
users to benefit from modern hardware, operating systems, and algo-
rithms, while the robot stays in its ecosystem. This solution is light-
weight, has minimal dependencies, and is compatible with many
programming languages, including end-of-life versions. Moreover,
our protocol abstracts away commands from robot hardware, facil-
itating reproducibility between experimental sites, easier adoption
of solutions developed elsewhere, and allowing for co-designing
robot behaviour with people less acquainted with programming.

Most robots rely on a middleware for inter-process communi-
cation (IPC), where different components exchange messages to
operate the device. While there have been multiple attempts at en-
abling this communication [8, 16], many robots use some version of
Robot Operating System (ROS) [10]. Besides providing packages and
common data types, ROS and its successor ROS 2 [7] enable basic IPC
via a publish/subscribe middleware, defining complex actions and
data that can be published via different nodes to subscribers, some
specifically supporting HRI [9]. Subscribers handle this data and
can provide services on their own. ROS provides bindings in popular
languages for programming robots (e.g. Python, C++), which have
been steadily updated, requiring more recent versions of Python or
a compiler toolchain to continue running the latest tools.

Consequently, supporting older robots on newer ROS stacks can
be difficult due to incompatibilities in newer toolchains, libraries,
and language definitions (e.g. differences in C/C++ standards or
Python versions) and the robot’ existing operating system, software
stack, and toolchains. This might result in excessive porting time
and is only possible if the original source code is available. Alter-
natively, one can introduce IPC or create nodes on a more modern
system to act as a bridge between the two, but this adds latency
and complexity in the system. Tools like rosbridge [3] provide
a solution but are still limited in application as they require mod-
ern compiler toolchains to ensure type consistencyand are hence
unsuitable to interface with very outdated or non-standard systems.
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At the lower level, communication between services is com-
monly done via network and local sockets, which are often basic
components of operating systems. Using sockets directly requires
that you also handle connections, define protocols, and marshal the
data between services. While this offers great flexibility, it requires
strong skills in architecture and design, programming, and testing—
especially if different programming languages are involved.

Communication frameworks like the Spread Toolkit [14] and
ZeroMQ [15] provide a higher-level interface to sockets and are
light on requirements. They help with connections and marshalling
primitive data like numbers and strings, but not with complex data
structures. Thus, additional protocol work is still required.

With the ZTL, we establish a novel framework and low-level
library that has light requirements and can be made widely avail-
able, including older and more exotic systems. Dependencies are
restricted to ZeroMQ [15] as the underlying communication han-
dler and a YAML [2] interpreter1 to provide simple but user-friendly
scripting and configuration functionalities. Using ZeroMQ for com-
munication allows ZTL to wrap primitive sockets to handle set-
ting up connections and sending and receiving data as atomic in-
structions. ZeroMQ also provides bindings to over 30 programming
languages and good compatibility between different library ver-
sions, thus sparing users marshalling work and much of the other
drudgery of low-level protocol handling. On top of ZeroMQ, ZTL
provides a simple interface for task lifecycle management, inspired
by ROS’s actionlib [12] and Task-State Patterns [6]. However, it does
not guarantee type safety or defined data types. Instead, message
content is modelled solely in YAML to provide flexibility between
and independence from specific datatypes used in the underlying
robot control software.

2 Purpose
The purpose of ZTL is to enable light-weight and widely compatible
remote task execution by providing a task protocol on top of ZeroMQ
that encapsulates YAML data. For that, we present a communication
architecture, a simple message exchange protocol and a notation to
model task lifecycles.

Basic communication is modelled as remote procedure calls re-
lying on three core components: (i) a client that can initiate remote
tasks, query the task’s current state and outcomes; (ii) a server that
dispatches the task specification to a controller that manages the
task lifecycle (described below, see Figure 3) that is then started
and monitored by an executor ; and (iii) a handler that acts upon the
task description.

All three components are independent of each other, but it is gen-
erally assumed that the server and handler components exist within
the same ecosystem, typically operating a robot, while interactions
between client and server are realised via ZeroMQ socket commu-
nication to allow the client to solely rely on ZTL for operating the
target system.

Figure 1 gives an overview of the architecture, with the client-
side class RemoteTask plus server components TaskServer, and
TaskExecutor as core parts of ZTL that can be instantiated and ex-
ecuted. In contrast, some parts of the server, i.e., TaskControllers

1https://pypi.org/project/oYAML/
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Figure 1: ZTL architecture overview, displaying client (green), server
(amber, grey, yellow, purple) and handler (blue) components.

and ExecutableTasks, must be inherited and implemented specif-
ically for the target hardware so that task specifications can be
interpreted and executed locally in their native environment. Con-
trollers simply have to implement initialisation, status, and abort
methods, while tasks need to provide execute and abort functions
to support the task lifecycle outlined below.

The message exchange protocol between the client and server
components requires specifying a scope (similar to ROS topics) to
support message dispatching, the task description which consists
of an ID, the task’s current state, and a payload containing the
task specification or results. Figure 2 gives an example task com-
munication with a message sent from a client (Fig. 2a) and the
corresponding reply from the server (Fig. 2b). Note that while this
example shows a structured payload (described below), the pro-
tocol allows for arbitrary payloads to be exchanged. However, it
explicitly requires metadata describing the task lifecycle. Moreover,
while the client initiates a task, its ID is specified by the server in the
controller component, which is managing the lifecycle of a task.

scope state id payload

handler component goal

/example INIT

cob head left

<empty>

(a) Example of an initialisation request. A client aims to initialise
a task at a server, specifying a dispatcher that would listen to the
scope /example.

cob:head:left

scope state id payload

/example INITIATED 1

(b) Example Server reply to initialisation request confirming that
the task has been received and dispatched to a handler component.

Figure 2: ZTL Protocol specification

In ZTL, we model a task’s lifecycle from a client’s requests to a
server, its active runtime, and terminal states as displayed in Fig-
ure 3. After a client requests to INIT (initiate) a task by sending
a task specification payload and the server indicates a successful
handshake via the INITIATED state, the server will try to invoke

https://pypi.org/project/oYAML/
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the task at the handler, setting its state to ACCEPTED or deny its
execution by replying with a REJECTED state, according to the han-
dling component’s response to the task specification given in the
payload. A task can then be terminated by the client, sending an
ABORT signal, resulting in the ABORTED final state. Otherwise, the
server can communicate the end of a task as either COMPLETED or
FAILED, depending on its outcome determined by the handler.

REJECTED

ACCEPTED

FAILED ABORTED

INITIATED

TaskServer: dispatch

TaskController: construct

success

failure

RemoteTask: init

RemoteTask: abort

TaskExecutor: finish

failure success

TaskExecutor: initiate

success

failure

failure

success

COMPLETED

Figure 3: Task lifecycle as modelled in ZTL. States are depicted in
blue; signals sent by the client are indicated in green, and server
components in amber, grey and yellow.

To enable interpretable behaviour design for HRI together with
non-programming experts, ZTL also provides a Task specification,
allowing clients to present a structured payload with a handler,
component, and goal. When controlling robots, such a payload can
be dispatched by a server to send goals for specific components
of individual robots. In Figure 2a, for example, the client requests
Care-O-bot (cob) to move its head to the straight position.

Moreover, ZTL’s scripting engine allows designers to specify
sequences of tasks to be triggered at multiple servers from a single
client, expressed in a YAML file. We define a scene as a sequence of
steps that each can contain multiple handlers with a list of actions
(components and their goal specifications, all to be triggered in
parallel). Scenes, steps, and actions can be monitored for completion
or delayed if required, as indicated in scene below.
scene:

step(wait = bool; delay = int):
handler:
component: goal

In example scene, the second step greet is executed two sec-
onds after the initialise step without awaiting its completion.
The steps contain actions for handlers controlling cob and fetch
robots. Their goal specifications, which need to be interpreted by
the handler, trigger their text-to-speech engine (tts), arm or mobile
base components. Here, they are given as an [𝑥,𝑦, 𝜃] position for
cob’s base, goals to look up for fetch’s arm and base, a text for cob
to say and a command triggering a routine in its arm.
example scene:

initialise(wait = False):
cob:

base: [0, 0, 0]
fetch:
base: serving_position
arm: tucked_position

greet(delay = 2):
cob:

tts: "Hello and welcome to HRI!"
arm: wave

3 Characteristics
Our proposed solution aims to strike a balance between facilitating
IPC on a high level whilst offering most of the flexibility of lower-
level solutions. It is designed alongside the principles of versatility
and portability, i.e. the ability to use it on a wide range of systems
and the potential to encapsulate existing middleware protocols.
Moreover, the resulting protocol should be easy to interpret for
expert programmers and non-experts alike.

For end-users, our approach effectively separates runtime and de-
velopment environments and thereby facilitates rapid prototyping
by providing the following benefits:

(1) Interactive behaviours can be largely implemented solely re-
lying on the ZTL library. Since ZTL itself is low-level and light
on requirements, it is available for most operating systems,
allowing developers to use their familiar work environments
while the containerised robot control or simulation can be
installed, for example, on a more powerful machine.

(2) The simple, task-based communication protocol provided
by ZTL allows for hardware abstraction and simulation and
thus facilitates working without any robot and makes drop-
in replacements easier, for example, when the project focus
shifts or hardware becomes unavailable.

So far, ZTL has been used as a way to communicate between
different Python versions and to communicate between multiple
robots with different hardware and operating systems (a NAO 6
and a Misty II) [1]. The framework also facilitates communication
between a modern virtual reality device (Meta Quest Pro) and a
simulated fetch mobile manipulator to enable the experimentation
of a project to facilitate interaction fluidity between humans and
robots [4]. ZTL further supports the simultaneous operation and
demonstration of multiple robot platforms (Pepper, Fetch, Care-O-
bot 4, . . . ) and smart actuators supporting ongoing research projects
like Hospital@Home, HRI experimentation [11, 13], and public live
presentations2 in the University of Hertfordshire’s Robot House.

2https://robothouse.herts.ac.uk/news/robot-lab-live-2023/
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4 Code/Software
ZTL is available for Python versions 2 and 3 and can be installed,
ideally in a virtual environment3, via the Python Package Index4
using pip, see README.md for details. The source code is hosted
at https://gitlab.com/robothouse/rh-user/ztl and licensed under the
Simplified (2-Clause) BSD License. It is organised into core classes
and scripting functionality to trigger a series of tasks. ZTL also
provides example files, and testing classes using pytest5 (not dis-
played).
core:
- client.py
- protocol.py
- server.py
- task.py

example:
- sample_conf.yaml
- sample_script.yaml
- simple_client.py
- simple_server.py
- task_client.py
- task_server.py

script:
- run_script.py

5 Usage Notes
The ZTL package contains example server and client scripts that
can be used to verify correct installation and to explore the protocol.
First, start the server component, here on port 12345, listening to
tasks on scope /test:
> ztl_task_server -p 12345 -s "/test"

The output should indicate that the server is listening at the
specified port and scope. In another terminal, execute the client to
send a task to the server on the local machine:
> ztl_task_client -r "localhost" -p 12345 -s "/test" \

"some-handler:executing-component:goal-state"

Upon successful communication, the example task will execute
while the server and client output details about the communication
between them. After approximately five seconds, the client will
report completion of the task as finished.

The following example demonstrates ZTL programmatically in
Python, where a TaskServer from ztl.core.server redirects re-
quest to a controller called SomeController:
server = TaskServer(12358)
server.register("/robot", RobotController())
server.listen()

Per the ZTL protocol (Fig. 3), the RobotController must imple-
ment init(), status(), and abort() to create tasks for each han-
dler, report task status, and offer aborting tasks. A TaskExecutor
then runs and monitors the task in a thread and reports exceptions.
When given ’xbot’ as a handler, it might spawn the following
ExecutableTask to control a ROS-based robot’s kinematic joints:

3https://docs.python.org/3/library/venv.html
4https://pypi.org
5https://docs.pytest.org/en/stable/

class RobotKinematics(ExecutableTask):
def __init__(self, goal):

self.j_pub = rospy.Publisher("...", \
sensor_msgs.JointState, queue_size=1)

self.j_pos = parse_positions(goal)
def execute(self):
msg = sensor_msgs.JointState()
msg.position = self.j_pos
self.j_pub.publish(msg)

Sending a request to this server from a client requires import-
ing protocol.Task and client.RemoteTask from ztl.core. The
client can then abort or query the status of the task by calling
abort(), status(), or wait for it to finish:
task = RemoteTask("localhost", 12358, "/robot")
request = Task.encode("robot x", \

"kinematics", [-3, 14, 1.5, 9, -2])
task_id, reply = task.trigger(request)
state, reply = task.wait(task_id, timeout=5)

5.1 Limitations
Operating legacy hardware and software comes with security risks
that are outside the scope of the provided solution, in the same
way that many security aspects are outside the scope of ROS, for
example. ROS2 and ZeroMQ provide authentication and encryption
mechanisms [5, 7], but adopting those might lead to compatibility
issues (e.g. server and client need to support the same encryption al-
gorithms) and other risks of running a robot with vulnerable legacy
software remain. Users should thus keep in mind that, while ZTL
makes it possible to work with them, they should exercise caution
and only use older robots in controlled or isolated environments.

Our solution already offers a useful set of strong support mecha-
nisms for developing and controlling high-level HRI behaviours, in
particular for Wizard-of-Oz-based experimentation and demon-
strator setups, and when designing robot behaviours with lay
people. However, to maximise its potential, ZTL will require bi-
directionality, i.e. integration of lower-level protocols to process
sensory data from a robot, such as spoken language (audio signals)
or people perception (video signals) and integration with virtualisa-
tion software to enable digital twinning and simulated interactions.

6 Conclusion and Future Work
This paper introduced ZTL, a freely available library providing a
simple server-client architecture to decouple robot hardware from
higher-level control logic by implementing a simple, task-based
protocol for robot control. Our software has efficiently extended
the lifetime of robot hardware and facilitated the co-design of robot
behaviours with non-programming experts in multiple contexts.
Essential ongoing work, integrating lower-level protocols to stream
sensory data from robots to clients, will enable instrumental aspects
of bi-directionality and widen the applicability of our approach.
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