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Abstract Social interaction between humans takes place

in the spatial environment on a daily basis. We occupy
space for ourselves and respect the dynamics of spaces

that are occupied by others. In human-robot interaction,

spatial models are commonly used for structuring rela-

tively far-away interactions or passing-by scenarios. This

work instead, focuses on the transition between distant

and close communication for an interaction opening. We

applied a spatial model to a humanoid robot and imple-

mented an attention system that is connected to it. The

resulting behaviors have been verified in an online video

study. The questionnaire revealed that these behaviors

are applicable and result in a robot that has been per-

ceived as more interested in the human and shows its

attention and intentions earlier and to a higher degree

than other strategies.

Keywords Human-robot interaction · Attention ·
Interaction opening · Experimental evaluation

1 Introduction

The acceptance of a robot as an communicative part-

ner in domestic or public environments fundamentally

depends on social factors in that people feel comfort-

able and confident during an interaction [1]. Therefore,

a general goal in human-robot interaction (HRI) is to

understand and mimic communicative cues observed in

human-human interaction (HHI). Recent work in social

This work has been supported by the German Research So-
ciety (DFG) within the Collaborative Research Center 673,
Alignment in Communication.

Patrick Holthaus · Karola Pitsch · Sven Wachsmuth
Applied Informatics
Faculty of Technology
Bielefeld University, Germany

robotics has explored these aspects in distant interactive

situations (in terms of proxemics) as well as close-up
situations (in terms of joint attention).

In this paper we are looking at the intersection or

transition between close and distant HRI, in particular,

at the distance-based modification of attention behaviors

while a person is approaching the robot. As also reported

in [2], the initiation period is critical for a successful

human-robot interaction. In most close-up experimental
scenarios the human partner is externally briefed about

the setup and task, while in most distant experimental

setups the robot does not show any reactive or initiative

behavior apart from approaching. Such studies typically

stop just before the actual communication is established.

To combine these approaches, we provide a robot

with a system that allows it to respond to proxemic

features in an interactive situation. Particularly, the

robot is able to use the distance to a human as an

input that triggers a behavioral output that is based

on proxemic cues. The resulting robot’s attention is

made transparent by the body posture, facing direction,

and gaze so that, in turn, the human is aware of the
intentions of the robot.

Of the many scenarios in which such an ability is

relevant, in this paper, we have chosen a receptionist

setting, as it is prototypical for many real-world cases.

To deploy a robot into a hotel lobby or a museum, one

should consider which impact a robot’s presence could

have on the human. E.g., people far away may be less

interested in an interaction with the robot than people

coming closer towards it. With the presented system, the

robot is able to respect the dynamics that humans use

by adapting its attention accordingly. An interaction can

actively be established by signaling the human interest

in an increasing manner as she comes closer towards the

robot.
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In the following, we examine two questions: (i) whether

the dynamic adaption of attention is accepted by the

users, and (ii) if it lets them understand better how

the robot can be used. To achieve a broad user-base,

we have conducted the expreiment online through the

video-study paradigm. In it, a fully autonomous sys-

tem (cf. Sec. 3) has been parametrized with different

strategies, to record a number of videos of the system

interaction in different styles. These videos have then

been shown to the participants in a random sequence,

without any information on their difference, and user’s
provided information on the point in time when they

reached their conclusions, as further explained in Sec.

4. We provide results showing that interpretability was

significantly different between the different behaviors

(cf. Sec. 5 and 6).

2 Related Work

To render human-robot interaction intuitive for the un-

trained human user, research in HRI has begun to ex-

plore which social cues - often derived from HHI - might

be beneficial for a robot system [3].

If robot systems are supposed to work in a reception-

ist setting, a central task consists in entering in contact

with a human user and to initiate an interaction with

her: The robot needs to signal to the human that it

is available, to engage her into an interaction and to

achieve a joint focus of attention. To do so and to make
the system easily accessible and understandable for un-

trained users, a set of social cues could be used which

are inspired by authentic human interactional practices.

Studies on HHI show that participants negotiate

their mutual engagement as a fine-grained stepwise pro-

cess [4] and - in co-present face-to-face interaction - make

use of a set of different multimodal cues (gaze, talk, body

orientation). Kendon reveals - analysing the arrival of

guests at a garden party - that participants tend to first

gaze at each other at a greater distance (here: six to

ten meters), then redirect their gaze and will only make

eye-contact again at about two meters and then proceed

to a greeting exchange (”hello”, hand-shaking) [5].

However, in the fields of social robotics and HRI,

the moment of this initial contact has received only

little attention: Most experimental studies only start

when the human is already placed in the appropriate

starting position in front of the robot (e.g. [2]) or an

operator remote-controls the start of the interaction for

an otherwise autonomous system (Shiomi et al. [6]).

If autonomous systems do include a module for ’open-

ing an interaction’, these comprise generally of a single

step: a greeting, such as ”hello”, on the verbal level

or a hand waving action (e.g. Shiomi et al. [7]). While

these systems acknowledge the need to explicitly mark

the beginning of an interaction, they do not take into

consideration its processural character.

Opposed to these studies, Pitsch et al. consider - for

the example of a museum guide robot - the opening of

a focused encounter as a dynamic process [8], in which

the robot closely monitors the visitor and attempts to

adjusts its own conduct accordingly: Once the system de-

tects a person approaching, it turns its head towards her

and monitors her head orientation (classified as gazing /

non-gazing at the robot). In case of loosing the visitor’s

face, it pauses and restarts parts of its opening utterance

(”may i // offer you some // information about this
painting?”) to adjust the progress of its talk to the visi-

tor’s interest in receiving some explanation. While this

”pause & restart”-procedure (Goodwin [9], Kuzuoka et

al. [10]) is only a very simple mechanisms using only

one observational cue (visitor’s gaze), it nevertheless

enables the robot system to engage in a stepwise con-

tingent opening with an approaching visitor for about

50 per cent of the cases. Investigation of these cases

reveal that - in comparison to a non-contingent opening
- visitors stay longer in the interaction with the robot

and produce more social behavior towards it (responses,

bidding farewell). While this model provides for the

visitors’ different speeds when approaching the exhibit

/ robot and is able to draw them closer to the robot,

it does not consider the ’spatial dimension’ in its own

right.

In contrast, the dimensions of ’space’ and ’proxemic

behavior’ have been well explored over the last years in
HRI, in particular referring to the works of Hall [11] and
Kendon [5] on HHI. Hall has introduced a generalistic

concept of proxemic conduct, in which he distinguishes

between certain physical distance classes that are used

during conversations. These classes include a personal,

social, and a public distance, representing the social

distance (i.e. the level of comfort, familiarity, etc.) of

the interaction partners.

Kendon has shown that groups of people tend to form

a set of systematic spatial arrangements (f-formations)

in co-present face-to-face interaction, which allow all

participants equal and direct access (vis-a-vis, L-shaped,

side-by-side). In this, the lower part of the body (in

particular, the feet) is dominant in forming the spatial

arrangement while the upper body part can be engaged

in actions of shorter duration. These observations on

human proxemics and spatial conduct are at the basis

of a range of models and experiments in HRI, which

consider how a robot should control its position with

regard to a human:
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(i) Making use of Hall’s proxemics, some systems are

designed to respect peoples’ usual spatial habits, e.g.

Tasaki et al. suggest a spatial mapping of a system’s

friendliness [12] and Nakauchi & Simmons developed

a robot that stand in line with humans by using

a model of personal space [13]. Pacchierotti et al.

use Hall’s distances to make a robot pass people in

hallways in appropriate distances [14], and Kirby et

al. have investigated a system’s following behavior

[15]. Takayama et al. even find for HRI settings that

proxemics is influenced by eye contact [16] which
suggests a tight coupling of different communicative

cues.

(ii) Another set of studies explores the spatial dimension

of a robot approaching a human. Dautenhahn et al.

reveal that seated persons dislike frontal approach of

the robot and instead prefer it to come closer from

the right or left side [17]. Koay et al. show also a

relationship between the system’s approach direction

and the robot’s appearance [18].

(iii) Some consideration has been given to the formation

of spatial arrangements in HRI following Kendon’s

suggestions. Huettenrauch find that people tend to

form f-formations with robots [19], and Yamaoka et

al. have proposed a model for proximity control, in

which the robot establishes certain spatial configu-

rations with the human and in relation to an object

[20].

(iv) Spatial behavior has also been shown to be conse-

quential for engaging humans: Shiomi et al. report

that a robot in a science museum can attract visitors

and engage them in interaction by moving around

[21].

A receptionist robot may not necessarily be able to

move in space, but is as well likely to be positioned

in one particular place, i.e. at the receptionist’s desk.
Thus, it will be relevant to realize proxemic conduct

in terms of observing humans and displaying certain

conduct with regard to their distance.

To do so, it can use a range of other social cues which

show its orientation to spatially located events: Pitsch

et al. found for a museum guide robot, which is placed

in a fix position, that visitors find it more positive

and systematic/reactive if the robot - to initiate an

interaction - moves its head slowly to random positions

as if pro-actively looking for a visitor as opposed to wait

in a fixed position [22].

Yamazaki et al. suggest - based on human conduct

- that a care robot should display its availability by

rotating its head to look at people and, if someone has

signaled need for help, the system should display its

recipiency of this reaction [23].

Based on Schegloff’s study on human ”body torque”

[24] (i.e. different orientation of parts of the body, in

particular lower and upper body parts) Kuzuoka et al.

investigate the effect of the robot’s body rotation on

reconfiguring an f-formation [25]. They explore whether

the lower segments of a robot’s body have a greater effect

on changing the spatial arrangement than the upper

body segments or the head. Their preliminary results

suggest that both the mere rotation of the robot’s head

and a ”body torque”-configuration has not much effect

on the users for repositioning themselves while a change
in the orientation of the whole body had a strong effect

on people repositioning themselves.

While studies on proxemics typically focus on distant

human-robot interaction, another line of work looks

at maintaining user engagement in close human-robot

scenarios [2,8,26]. Here one of the key ideas is to convey

intentionality either by appropriate feedback or mixed-

initiative strategies that guide the partner through the

interaction. An interesting result by Muhl & Nagai [27]

suggests that – once a mutual interaction between the

partners has been established – short distractions of

the robot leads to a higher engagement of the human
partner.

From this background, the following implications

arise for the design of our robot system:

(i) As a constraint, our receptionist system is fixed in

its position and therefore cannot approach a human.

Nevertheless, it can use its various degrees of freedom

to engage in a conversation and express attention.

(ii) In order to act socially based on physical distances,

it is required for the robot to detect possible human

interaction partners and their position over time.

(iii) As a final requirement, the robot has to dynamically

adjust its behaviors to reflect the current interaction

situation, i.e. interpret its interaction partner and

act accordingly.

3 Scenario

Our receptionist scenario consists of a multi-modal in-

teraction system that is implemented on a humanoid

robot. It is designed to help users find their ways to

offices of colleagues or other university buildings. For

the communication with a human it can use gesture

and speech. While the basic interaction with the robot

has already been shown in [28], we now present nonver-

bal means for establishing interaction spaces before and

maintaining them during the actual interaction at the

desk.
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Fig. 1 Picture of the hardware setup. The robot torso
BARTHOC with the Flobi head has been placed behind a
desk to act as a receptionist.

Therefore, we have enhanced our robot with an at-

tention system and a method to calculate the distance

to a person in the same room.

3.1 The Robot System

The proposed system is implemented on the humanoid

robot torso BARTHOC [29]. Due to huge improvements

in the technical construction and design, the original

head has been replaced by a newer version called Flobi

[30]. It has been explicitly designed to produce social

behaviors and human-like feedback [31] as well as inte-

grating sensor functionality.

Of the 45 degrees of freedom (DOF), only the hip,

head, and eyes are being used in this scenario (6 DOF).

The head is equipped with two fire-wire cameras in the

eyes and microphones in the ears. Since the cameras are

attached to the eye-balls, their image always reflects the

current view direction of the robot. For an image of the

hardware setup please see Fig. 1.

3.2 The Proximity-Based Person Attention System

The person attention system is based on a simple sensor-

actor loop that follows the face of a human using the

in-eye cameras of the robotic head. First the distance

and deviation of the human face from the camera center

is computed. Then the compensation pan-tilt angles

are decomposed differently between the hip, head turn,

and eye turn of the robot depending on the intimate,

personal, social, or public distance class.

3.2.1 Person Localization

An interaction partner for the robot is detected with a

standard face detection algorithm [32] providing a 2D

rectangle at image coordinates from the in-eye camera.

Assuming an average size of the detected rectangle on

a real face (≈ 15cm × 15cm), two estimations for the

distance can be calculated by triangulation. One con-

sidering the horizontal camera resolution and opening

angle, a second one based on the corresponding verti-

cal values. The distance of a person is then defined as

the mean of the horizontally and vertically estimated

distances.

According to Hall [11], we can now classify whether

the person stands either in an intimate (≤ 45cm), per-

sonal (≤ 120cm), social (≤ 360cm), or public (≥ 360cm)

distance to the robot. Persons with their face turned

away from the robot are disregarded. Thereby, we can

assure that only those are attended to which show sig-

nals of attention themselves. In Fig. 2 you can see a

human in a close social distance to the robot, ready to

enter the personal distance.

3.2.2 Compensation Angles

The robot is prompting its attentence by gazing at the

person using its cameras. For the horizontal pan and

vertical tilt individual compensation angles Φpan and

Φtilt are computed. The robot constantly turns by these

angles in order to keep the person’s face in the image
center which reflects the current gaze direction of the

robot. Final angles are determined by the width and

height normed vertical (dy) or horizontal (dx) deviation

from the image center multiplied with a basic angle φ.

For the intimate distance a factor of φ = 2° is used,

φ = 1.5° for personal, φ = 1° for social, and φ = 0.5° for

public distance. If the compensation angle is below a

threshold ε no movement is performed:

Φpan =


−φ dx > ε

φ dx < −ε
0 otherwise

Φtilt =


−φ dy > ε

φ dy < −ε
0 otherwise

Because the resulting angle compensation for the 2D

deviation in the image is distant specific, this already

leads to a stronger engagement of the robot when the

person comes nearer.
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Fig. 2 A person in social distance to the receptionist. The
augmented circuits surrounding the robot mark the different
distance classes from proxemics theory: dark blue surrounds
the personal, lighter blue marks the social, and the outer circle
limits the close public distance.

3.2.3 Decomposition of Compensation Angles Into

Robot Postures

These relative pan and tilt angles are distributed among

the robot’s joints specific for the distance class. The turn

is distributed among the hip, head turn, and eye turn

joints. The head pitch and eye pitch joints combine to

the overall pitch angle.

Here, a second method for adapting the attention of
the robot to the current interaction situation is applied.

Depending on Halls distance classes [11], the usage of

certain joints is restricted. A so-called inertia value (in

the sense of stiffness) determines to what extend the

complete range of a joint is being exhausted. A virtual

boundary limits the theoretically possible angle that a

joint can be maximally moved.

With a high inertia value the individual joints are

limited least, i.e. they can be moved to 50% of their real

maximum. Because of that, most of the movement is

accomplished using the eyes only. The head is used for

changes in gaze directions that cannot be reached by the

eyes alone. The hip remains practically unused. When

the inertia is set to medium, the joints are virtually

limited to use only 40% of their range. In this setup,

the head is used much more frequently for changing the

posture. A low inertia value limits the joints to 30%.

Therefore, also the hip joint contributes very often to

the actual turn value. The limitation above does not

introduce a hard boundary, but a soft one instead. If

the angle cannot be distributed the aforementioned way,

then the remaining part will be added to joints that

have not already reached their real maximum. Please

refer to Fig. 3 in which the principle of compensation

angles in conjunction with an inertia value is depicted

exemplary for a single joint.

Inertia:

high

medium

low

ϕ: 1° 1.5°0.5°

max. a
ngle

Fig. 3 Distribution of basic angle φ used for compensation
and inertia values with regard to distance class. Dark blue
marks the values used in personal distance, values in the social
distance are highlighted with a lighter blue, and values with
the lightest blue are used in public distance.

3.2.4 Attention Distractors

Since humans do not stare consistently at each other

during a conversation [33], we also suggest the imple-

mentation of distracting random gazes. These shift the

robot’s focus from a human to another location for a

short time of approximately one second. The robot’s

attention seemingly gets caught by some other entity in

the room.

The view angle is shifted relatively from the current

gaze location and is decomposed exactly the same as in
the case of a detected face. The only difference is in the

usage of joints. The inertia value is even higher than if

a human is detected. Thus, the joints are only limited

to 70% of their range. This way, one can assure that the

robot does not turn its body away from a human in a

face-to-face situation.

4 Experimental setup

The proposed attention system has been evaluated with

the help of an online questionnaire. Participants had to

answer questions referring to videos that show a human

approaching the receptionist. Further they had to mark

the time of the robot’s first interaction attempt in the

videos. Two main questions have been addressed in this

survey:

(i) To what extent does the dynamic modification of

the attention behavior alter people’s perception of

the robot?

(ii) Which influence does the addition of random gazes

have on the perception of the robot?
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4.1 Videos of the Different Conditions

We videotaped an interaction between a human and our

robot. This way, we could ensure that each participant

group rates exactly the same robot behaviors. Further-

more, the experimental results could not be influenced

by the various ways people would try to interact with the

robot. Comparability within and between participant

groups could only be guaranteed because the interacting
person’s behavior, especially his path towards the robot,

stays the same in all videos.

The robot has been placed behind a desk in the

corner of a room: A human enters this room, walks

through it, and eventually stands in front of the desk.

When the human arrives and enters the robot’s personal

distance, it says: “Hello, my name is Flobi. How may I

serve you?”. The human answers: “Tell me the way to

Patrick’s office”.

In Sec. 3.2 we proposed a distance-adapted attention
model in conjunction with in-between random gazes.

To evaluate this model, we compare the dynamic move-
ments to two static behavior styles. If the robot behaves

dynamically, inertia value i as well as compensation an-

gles Φpan and Φtilt are adapted to the actual distance of

a person as in the introduced model. Contrarily, static

behavior means that during close and far interaction

styles, these parameters are fixed. The robot behaves as
if an interlocutor would be located in either a personal

(close) or public (far) distance to the robot. Furthermore,

we differed among normal movment styles to normal

plus additional random movement.

As a consequence, eight videos of the same situation

but with different interaction styles have been recorded:

Z The robot does not move at all (Zero movement).

R The robot’s gaze is shifted only Randomly.

CN The robot tries to focus its counterpart but acts as if

he were permanently in a personal (Close) distance,

No random movements added.

DN Again, the human is focused. This time, the move-

ment is Distance dependent.

FN The gaze is shifted as if the person were in a public

(Far) distance.

CR Same as CN, but Random movements are added in

between.

DR Distance dependent as DN, but with Random move-

ments.

FR Like FN, with Random movements added.

The interaction has been recorded from two perspec-

tives. One camera has been following the human all the

time and another one shot a close-up of the robot. Both

of the videos have been combined to a single one that

shows the perspectives side by side. In Fig. 4 you can

Fig. 4 Video screen-shots from the study. The left camera
image follows the person as he comes closer to the robot. In
the right image a close-up of the robot is shown to let people
identify the robot’s motions reliably.

see three screen shots of the resulting video that has

been shown to the participants.

All of the videos have been synchronized to the frame

one could spot the robot in the left video for the first

time. They fade to black while the human answers the

robot to suggest an ongoing interaction between the two

agents.

4.2 Questionnaire Design

The participants had to fill out an online questionnaire

where they were shown three different videos. The first

video always showed the Z condition, in the second and

third video, the participants could see two videos from
different conditions. To prevent side effects of sequence,

these videos were shown in random order. Altogether,

participants have been put in one of the following five

experimental conditions:

NR Videos differ in containing Random movements or

Not.(DN and DR, or FN and FR, or CN and CR)

FD The robot acts as if the human is either Far away or

dynamically adjusts its movement to the Distance.(FN

and DN, or FR and DR)

CD The robot treats the human either as Close to the

robot or dynamically adjusts to the Distance.(CN

and DN, or CR and DR)
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CF The robot acts as if the human is either Close or

Far away.(CN and FN, or CR and FR)

RR The robot only shows Random movements in both

videos.(Control group)

For each of the videos, participants had to determine

the Timestamps when they thought the robot had real-

ized that the human wanted to interact with it. They

had to do so by stopping the video at exactly this time.

The video could not be watched any further beyond that

point.

After identifying the timestamps in all three con-

ditions, the videos have been presented a second time.

Here, participants had the possibility to watch the video

as a whole and as many times as they wanted. Beneath

the video, they were asked to rate certain aspects of the
robot’s behavior on a five-point Likert scale (0-4):

– The robot’s Interest in the human

– The Appropriateness of the robot’s behaviors

– The movement’s Human-Likeness

– The Naturalness of the robot’s movements

– How much Attention the robot payed to the human.

– The robot’s Autonomy

– How much of its Intention the robot revealed.

4.3 Participants

Altogether 111 users participated in the study, of which

39.6% were female and 60.4% were male. Their age

varied between 16 and 70 years with an average of 30.5.

Almost half of them were affiliated with the university,

either as students (31.8%) or as scientific staff (18.2%).

The vast majority of 88.3% were native German speakers.

The rest stated a high understanding of English or the

German language. The questionnaire was available in

English and German languages, so the questions could

be well understood and answered by every participant.

The robot experience highly varied between subjects.

A very large part (84.7%) did not rate their robot expe-

rience higher than average on a five-point Likert scale

(0-4). The mean value for the participant’s robot ex-

perience has been at 1.04. In contrast, most of them

rated their computer experience either 3 or 4 (67.9%).

With an average of 2.94, the computer knowledge seems

to be fairly high among the participants. In general,

one can say that although the majority of participants

are naive to the subject, they have a common technical

understanding.

5 Results

Pausing time of the video and answers to the question-

naire have been evaluated for significant deviations of

their mean value. As a method for the comparison, a

paired-samples Wilcoxon signed-rank test with a signifi-

cance level α = 5% has been used.

5.1 Goal Directed Movements

Almost all of the questions asked produced significant

differences between the Z video (zero movement) and

every other video that has been shown. Participants

rated all of the robot’s attributes higher for videos that

showed a moving than for a still robot (p < .037). Also,

participants thought the robot realizes its human in-

teraction partner faster if it was moving. Times in the

stopping task were significantly shorter compared to the

no-movement condition (p < .009).

The RR group with 12 participants is an exception

to the others: Fig. 5 shows in detail that videos con-

taining pure random movements only produced signifi-

cant changes in the participants’ ratings for the robot’s

Human-Likeness and Attention. Instead, Interest, Ap-
propriateness, Naturalness, Autonomy, and Intention

could not be distinguished from videos without any

robot movement. Only the first of both random videos

has been stopped significantly earlier than the video

without movement (p < .024). Pausing times of the

second random video are higher again and hence no sig-
nificant differences could be found. In Fig. 6 exemplary

the densities of the video timestamps for the RR group
are shown. There is an obvious difference between the

densities for the zero condition in comparision to both

random videos. Additionally, a shift to the right for the

second random video is noticable.

5.2 Distance Dependent Modification of Behaviors

Only one of the FD, CD, and FC groups showed signifi-

cant deviations in the ratings of the robot’s behaviors.

Groups CD (21 users) and FC (24) did not show any

differences between the two videos that were presented

to them. Responses in the FD condition (26 partic-

ipants, FR vs. DR or FN vs. DN) instead could be

distinguished. The result of this comparison is shown in

Fig. 7. The robot’s initative has been spotted earlier and

participants rated the robot’s Interest, Attention, and

its Intention higher in the video showing the distance

dependent behavior than in the far away condition.
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Fig. 5 Boxplot of video response time (continiously) and
ratings (discrete) of the RR group with 12 participants. The
zero movement condition (Z) is compared to two different
random only movement types (R). Median values are marked
with a bold line, the box contains central 50% of given answers.
The rounded (3 dig.) two-tailed significance p of the statistical
test is depicted if the differences of means are either significant
(∗) or highly significant (∗∗).
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Fig. 6 Density of the video timestamps in seconds from the
RR group with 12 participants. Densities for the zero move-
ment condition (Z) as well as the first and second random
only movement types (R) are shown.

5.3 The Influence of Random Movements

The participants’ answers of the NR group (27) differed

significantly in five categories. Please refer to Fig. 8 for

detailed results. The robot’s Interest, Human-Likeness,

Attention, and Intention have been rated better in videos

with random movements (CR, DR, FR) than in videos

without random movements (CN, DN, FN). Also, the

robot’s intention to communicate has been perceived

earlier if in-between random movements occur. Other

attributes did not show significant differences in the

users’ ratings.

6 Discussion

The above results show that the presented system can

serve as an entry point for a human-robot interaction.

Each of the presented movement types is more appealing

to a human user than no movement at all.

6.1 Random Only Movements

Even totally random movements (RR group) suggest

a certain human-likeness of the robot. The significance

in the ratings of the attention in the random-only case

might be caused by the fact that the robot accidentally

looked straight into the human’s eye as it began to speak.

If this had not been the case, the attention ratings

of the random behavior would possibly also not be

distinguishable from the no-movement case. Another

possibility would be that participants attribute the robot

some kind of attention because it can shift its gaze

to places somewhere in the room. On the one hand,
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Fig. 7 Boxplot of video stop time in seconds (cont.) and
ratings (disc.) by video type of the FD group (26 participants).
Z marks zero movement videos, F consists of videos from the
far away condition (FN, FR), and D contains videos with
dynamic movement adaption (DN, DR). Median values are
marked with a bold line, the box contains central 50% of given
answers. The rounded (3 dig.) two-tailed significance p of the
statistical test is depicted if the differences in the ratings are
either significant (∗) or highly significant (∗∗).
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Fig. 8 Boxplot of video stop time in seconds (cont.) and
ratings (disc.) by video type of the NR group (27 participants).
Z marks zero movement videos, N consists of videos with
straight person-directed gaze (FN, DN, CN), R contains videos
with additional random gazes (FR, DR, CR). Median values
are marked with a bold line, the box contains 50% of given
answers. The rounded (3 dig.) two-tailed significance p of the
statistical test is depicted if the differences in the ratings are
either significant (∗) or highly significant (∗∗).
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participants identified an initiative by the robot earlier

in the first random video compared to no movement.

On the other hand, in the second random video, the

timestamp could instead not be distinguished from the

zero condition. Participants apparently mis-interpreted

the random movements as a sign of interaction in the

first place, but realized the movements were intentionless

while watching the second video.

6.2 Additional Random Gazes

Random gazes in conjunction with person-directed gaze

can lead to a better user experience than person-directed

gaze alone (NR group). Participants believed that the

robot had more interest in the human, was more human-

like, paid more attention to the human, and expressed

its intentions to a greater degree when the robot exhib-

ited random gazes. Also, they noticed a robot-triggered

interaction earlier in this case.

At a first glance it might be confusing that especially

the attention is rated higher when the robot looks away

from time to time. We believe that these distracting

gazes actually help to communicate an attention to the

human because the robot re-focuses on the human every

time it had looked away. Therefore, the robot shows that
its attention is caught again by the human. At the same

time the robot communicates that it is interactive in an

effective way that can easily and almost immediately

be detected by a human interaction partner. While

the random gazes help to assign a certain personality

to the robot, they do not have an influence on the

appropriateness, naturalness, of the behaviors and the

autonomy of the robot. The robot apparently does not

lose any of its functionality by the addition of distracting

gazes.

6.3 Distance Dependent Modification

No differences could be found between the groups that
saw the two distance independent behaviors of the robot

(FC group). The difference in these conditions obviously

did not lead to a higher valuation in one of them. While

all cases in this group differed significantly from the

zero movement video, participants did not prefer one

solution over the other.

Also the distance-dependent condition is not distin-

guishable from the condition in which the robot acts as

if the person stands directly in front of it (CD group).

We believe that this could be caused by the similarity

of the videos for these cases. Participants could not re-

ally tell the difference between the two conditions. That

might be a problem of the video itself but could also be

a consequence of the experimental setup. Since people

were not in the same room with the robot but saw a

video instead, their comfortable feeling could not be vio-

lated by a robot that doesn’t respect personal distances.

Therefore, the ratings for the robot are almost identical

in the case of direct response as in the dynamic case.

Between the far-away and the distance-dependent

condition (FD group), significant differences could be

found in the user’s ratings of the robot’s interest, atten-

tion, intention, and video timestamp. Apparently, the

robot was experienced as more responsive and expressive

in general, if it uses more of its capabilities and turns

its body earlier and more frequently to the interaction

partner. As these movements are perceived sooner and

rated higher, the distance-dependent behaviors should

be preferred over the artificially restricted ones.

7 Conclusion

In this work, we investigated an attention model for a

receptionist robot that reflects the distance between the

robot and its interaction partner. The system allows

the robot to exhibit distance dependent social behaviors

which connect close and distant HRI. We have shown

that the proposed dynamic approach can serve as an

entry point for a face-to-face interaction in a receptionist

scenario and should be preferred over other strategies

such as a non-moving or randomly moving robot.

While random movements alone are not suitable as
an entry for the interaction, the overall behavior can

benefit from the addition of random directions to the

person-directed gaze in terms of user experienced robot

intention, attention, interest and human-likeness. In-

volvement of the robot should be shown in a distance

dependent manner to increase the perceived intention,

attention and interest. Restricting the robot’s hip move-

ment in face-to-face situations leads to a lower overall

rating of the robot’s responsiveness. The opposite case

of immediate response remains a question that should

probably be addressed again, since we have not found

any significant differences but doubt that an immediate

response would be appropriate under real-world condi-

tions.

Acknowledgements We are grateful for all pre-testers’ and
participants’ for time and help. Also, we would like to thank
Ingo Lütkebohle and Marc Hanheide for their advise as well
as the CITEC CLF, especially Florian Lier, for their support
in the technical realization of the video study.



How Can I Help? 11

References

1. T. Fong, I. Nourbakhsh, and K. Dautenhahn. A survey
of socially interactive robots. Robotics and Autonomous
Systems, 42(3):143–166, March 2003.

2. I. Lütkebohle, J. Peltason, L. Schillingmann, C. Elbrechter,
B. Wrede, S. Wachsmuth, and R. Haschke. The curious robot
- structuring interactive robot learning. In International
Conference on Robotics and Automation, Kobe, Japan, 2009.
IEEE.

3. C. Breazeal, A. Takanishi, and T. Kobayashi. Social robots
that interact with people. Springer Handbook of Robotics.
Springer, 2008. 1349-1369.

4. Schegloff, E. A. (2002). Opening sequencing. In J. E. Katz
& M. Aakhus (Eds.), Perpetual contact: Mobile commu-
nication, private talk, public performance. (pp. 326-85).
Cambridge: Cambridge University Press.

5. Kendon, A. Conducting interaction: Patterns of social be-
havior in focused encounters. New York: Cambridge Univer-
sity Press 1990.

6. Shiomi, M., Kanda, T., Ishiguro, H., and Hagita, N. A
larger audience, please!: Encouraging people to listen to a
guide robot. In HRI ’10: Proceeding of the 5th ACM/IEEE
international conference on human-robot interaction.

7. Shiomi, M., Sakamoto, D., Kanda, T., Ishi, C. T., Ishig-
uro, H., and Hagita, N. A semi-autonomous communication
robot: A field trial at a train station. In HRI ’08: Proceedings
of the 3rd ACM/IEEE international conference on human
robot interaction.

8. K. Pitsch, H. Kuzuoka, Y. Suzuki, P. Luff, C. Heath, K. Ya-
mazaki, A. Yamazaki, and Y. Kuno. “The first five seconds”:
Contigent step-wise entry as a means to secure sustained
engagement in human-robot-interaction. In International
Symposium on Robot and Human Interactive Communica-
tion, Toyama, Japan, September 2009.

9. Goodwin, Charles Conversational organization: Interaction
between speakers and hearers. Academic Press (New York),
1981.

10. Kuzuoka, H., Pitsch, K., Suzuki, Y., Kawaguchi, I., Ya-
mazaki, K., Kuno, Y., Yamazaki, A., Luff, P. and Ch. Heath
(2008). Effects of restarts and pauses on achieving a state of
mutual gaze between a human and a robot. In CSCW 2008.

11. Edward T. Hall. Proxemics. Current Anthropology,
9(2/3):83, 1968.

12. T. Tasaki, K. Komatani, T. Ogata, and H. Okuno. Spa-
tially Mapping of Friendliness for Human-Robot Interaction.
Proc. of IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 52–526, Edmonton, August 2005.

13. Y. Nakauchi, and R Simmons. A social robot that stands
in line. Proc. of the IEEE/RSJ Intern. Conference on Intelli-
gent Robots and Systems, pages 357–364, 2000.

14. E. Pacchierotti, H. I. Christensen, and P. Jensfelt. Evalua-
tion of passing distance for social robots. In IEEE Workshop
on Robot and Human Interactive Communication (RO-
MAN), Hartfordshire, 2006.

15. Rachel Kirby, Reid Simmons, and Jodi Forlizzi. Compan-
ion: A constraint optimizing method for person-acceptable
navigation. In IEEE International Symposium on Robot
and Human Interactive Communication (RO-MAN), pages
607–612, September 2009.

16. Leila Takayama and Caroline Pantofaru. Influences on
proxemic behaviors in human-robot interaction. In Intelli-
gent Robots and Systems (IROS), St. Louis, MO, 2009.

17. Dautenhahn, K., Walters, M., Woods, S., Koay, K. L.,
Nehaniv, C. L., Sisbot, A., Simeon, T. (2006). How may
I serve you?: A robot companion approaching a seated

person in a helping context. In Proceedings of the 1st ACM
SIGCHI/SIGART conference on human-robot interaction.

18. K. L. Koay, D. S. Syrdal, M. L. Walters and K. Dauten-
hahn. Living with Robots: Investigating the Habituation
Effect in Participants: Preferences During a Longitudinal
Human-Robot Interaction Study. 16th IEEE International
Confer-ence on Robot & Human Interactive Communication,
2007.

19. H. Huettenrauch, K. S. Eklundh, A. Green, and E. A.
Topp. Investigating Spatial Relationships in Human-Robot
Inter-action. Proceedings of the 2006 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages
5052–5059, 2006.

20. Yamaoka, F., Kanda, T., Ishiguro, H., & Hagita, N.
How close? A model of proximity control for information-
presenting robots. In HRI 2008.

21. Shiomi, M., Kanda, T., Ishiguro, H., and Hagita, N.
(2006). Interactive humanoid robots for a science museum.
In HRI’06. Salt Lake City, Utah, USA.

22. Pitsch, K., Wrede, S., Seele, J. -C. h., and Süssenbach, L.
Attitude of german museum visitors towards an interactive
art guide robot. In HRI2011.

23. Yamazaki, K., Kawashima, M., Kuno, Y., Akiya, N., Bur-
delski, M., Yamazaki, A., and Kuzuoka, H. Prior-To-Request
and request behaviors within elderly day care: Implications
for developing service robots for use in multiparty settings.
In ECSCW 2007.

24. Schegloff, E. A. (1998). Body torque. Social Research,
65(3), 535-596.

25. Kuzuoka, H., Suzuki, Y., Yamashita, J., and Yamazaki, K.
Reconfiguring spatial formation arrangement by robot body
orientation. In HRI ’10: Proceeding of the 5th ACM/IEEE
international conference on human-robot interaction.

26. C. Breazeal and B. Scassellati. How to build robots that
make friends and influence people. In Intelligent Robot
Systems (IROS), pages 858–863, Kyonjiu, Korea, 1999.

27. C. Muhl and Y. Nagai. Does disturbance discourage peo-
ple from communicating with a robot? In The 16th IEEE
International Symposium on Robot and Human Interactive
Communication, Jeju, Korea, 2007.

28. N. Beuter, T. Spexard, I. Lütkebohle, J. Peltason, and
F. Kummert. Where is this? - gesture based multimodal
interaction with an anthropomorphic robot. In International
Conference on Humanoid Robots, Daejeon, Korea, 2008.
IEEE-RAS.

29. M. Hackel, M. Schwope, J. Fritsch, B. Wrede, and G.
Sagerer. Designing a sociable humanoid robot for interdis-
ciplinary research. Advanced Robotics, 20(11):1219–1235,
2006.

30. I. Lütkebohle, F. Hegel, S. Schulz, M. Hackel, B. Wrede, S.
Wachsmuth, and G. Sagerer. The bielefeld anthropomorphic
robot head “flobi“. In IEEE International Conference on
Robotics and Automation, Anchorage, Alaska, 2010. IEEE.

31. F. Hegel. Gestalterisch konstruktiver Entwurf eines
sozialen Roboters. PhD thesis, Bielefeld University, 2010.

32. P. Viola and M. Jones. Rapid object detection using a
boosted cascade of simple features. In Computer Vision
and Pattern Recognition (CVPR), volume 1, pages 511–518,
2001.

33. A. Kendon. Some functions of gaze-direction in social
interaction. Acta Psychologica, 26:22 – 63, 1967.



12 Patrick Holthaus et al.

Patrick Holthaus is a PhD student and member of

the Applied Informatics group and CRC 673 ”Alignment

in Communication“ at Bielefeld University, Germany. In

2009 he received his M.Sc. in Intelligent Systems also at

Bielefeld University with the top result of the year. His

current research interest is focussed to Human Robot

Interaction and particularly social communication signs

in the spatial dimension.

Karola Pitsch is a research fellow in the Applied

Informatics Group and the Research Institute for Cog-

nition and Robotics (CoR-Lab) at Bielefeld University,
where she currently works on the EU project ”iTalk”

and co-heads the project ”Alignment in Augmented Re-

ality based Cooperation” in the CRC 673 ”Alignment

in Communication”. In 2006, she received her PhD in

Linguistics from Bielefeld University. From 2005 to 2008,

she has been a research fellow in the Work, Interaction

and Technology Research Group at King’s College Lon-

don working on the EU-project ”PaperWorks” before

joining the Applied Informatics Group at Bielefeld Uni-

versity in 2008. She has undertaken extended research

stays at EHESS (France), UCLA (USA), Universidad

de Buenos Aires (Argentina) and Saitama University

(Japan). Her research focuses on multimodal human in-

teraction in authentic and technically mediated settings,

the integration of qualitative and quantitative research

methods and the design and evaluation of human-robot-

interaction.

Sven Wachsmuth holds a faculty staff position in

the Applied Informatics and, since 2008, is heading the

Central Lab Facilities of the Center of Excellence Cog-

nitive Interaction Technology (CITEC). He received his

Diploma and PhD in Computer Science from Bielefeld
University in 1997 and 2001, respectively. In 2002, he

spent a sabbatical year supported by the DFG at the

AI group, University of Toronto. He was technical co-

ordinator of the FP5 project VAMPIRE and is PI in

the DFG CRC673 ”Alignment in Communication” and
CoR-Lab. He is currently working in the fields of visual

scene analysis and cognitive robotics.


