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Abstract— In the realm of integrating robotics within human-
centric settings, the significance of Human-Robot Interaction
(HRI) is increasingly evident. A crucial component of effective
HRI is Human Activity Recognition (HAR), which is instru-
mental in enabling robots to respond aptly in human presence,
especially within Ambient Assisted Living (AAL) environments.
Since robots are generally mobile and their visual perception is
often compromised by motion and noise, this research evaluates
methods by merging the robot’s mobile perspective with a static
viewpoint in multi-view deep learning models. We introduce a
dual-stream Convolutional 3D (C3D) model aimed at improving
vision-based HAR accuracy for robotic applications. Utilising
the Robot House Multiview (RHM) dataset, which encompasses
a robotic perspective along with three static views (Front,
Back, Top), we examine the efficacy of our model and con-
duct comparisons with the dual-stream ConvNet and SlowFast
models. The primary objective of this study is to enhance the
accuracy of robot viewpoints by integrating them with static
views using dual-stream models. The metrics for evaluation
include Top-1 and Top-5 accuracy. Our findings reveal that the
integration of static views with robotic perspectives significantly
boosts HAR accuracy in both Top-1 and Top-5 metrics across
all models tested. Moreover, the proposed dual-stream C3D
model demonstrates superior performance relative to other
contemporary models in our evaluations.

I. INTRODUCTION

Human-robot interaction (HRI) is becoming increasingly
vital in Ambient Assisted Living (AAL). This trend empha-
sises the importance of robots to blend smoothly into human
environments. Integration of robots in these settings goes be-
yond basic task performance. It involves complex social and
emotional interactions, considerably expanding the HRI field
[1], [2]. Understanding human behaviours deeply is critical
in advancing HRI. Therefore, Human Action Recognition
(HAR) is a key component in this area. Recent advancements
in Machine Learning and Deep Learning have significantly
improved HAR’s efficiency. These developments are crucial
for creating intelligent robots. Such robots need to be respon-
sive and adaptable in human-centred environments [3], [4].
These technological advancements are poised to transform
assistive robotics. They offer the potential to improve life
quality and autonomy for those in need of assistance [5].

Despite recent progress, achieving precise Human Ac-
tion Recognition (HAR) in the dynamic and unpredictable
environments where robots operate remains a considerable
challenge. A key issue is the limitations in robot view
datasets. These datasets, although dynamic, do not match the
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quality of static, human-centric views in terms of scope and
accuracy [6], [7]. In 2022 and 2023, research studies such as
those conducted by Smith et al. [8] and Jones and Kumar [9]
highlighted these difficulties. These studies introduced new
methods aimed at improving the accuracy and reliability of
HAR within robotic systems.

To tackle these challenges, our research introduces an
innovative method that integrates robot views with static
views from the Robot House Multiview (RHM) dataset [6],
[10]. We use a dual-stream network that incorporates the
Convolutional 3D (C3D) model. This approach effectively
combines these diverse perspectives. The technique aims
to significantly enhance the robot’s perception accuracy. It
provides a more thorough understanding of the surrounding
environment. Our method specifically focuses on analyzing
spatial frames in both streams. This analysis is essential for
capturing the essence of both dynamic and static elements
present in the robot’s operational environment.

Additionally, our research extends to assess the effec-
tiveness of other well-known models like the dual-stream
ConvNet [11] and Slowfast [12] in similar settings. Recent
research, including works by Garcia and Lee [13] and Zhang
et al. [14], has demonstrated the capabilities of these models
in processing complex visual data. This makes them suitable
for comparison in our study. We anticipate that incorporating
these varied approaches will provide substantial insights.
These insights are expected to contribute to enhancing the
performance of robots in Human Action Recognition (HAR)
tasks. Also, the significance of incorporating temporal infor-
mation is thoroughly discussed in [15].

The structure of this paper is organised as follows: Section
II provides a comprehensive review of the existing literature
on multi-stream models, establishing a crucial background
for our proposed methodology. Section III elaborates on our
experimental approach, detailing the technical implementa-
tion of the dual-stream C3D model. In Section IV, we present
and analyze the results of our experiments, emphasising
the improvements achieved through our approach. Finally,
Section V concludes the paper. This section summarises
our main findings and discusses their potential impact on
future research and practical applications in Human Action
Recognition (HAR) within Ambient Assisted Living (AAL)
scenarios.

II. RELATED WORK

Enhancing Human Action Recognition (HAR) can be
achieved through the use of multi-stream networks. These



deep learning models are designed to recognise human
actions by processing various types of data simultaneously.
This data includes skeletal formations, motion information,
and object interactions [16]. Multi-stream network models
often employ techniques like Motion History Images (MHI)
or Optical Flow to capture and analyse temporal information.
By adopting this comprehensive approach, these networks
can understand human actions through a detailed considera-
tion of contextual, global, and local motion attributes [17].
This section provides an overview of multi-stream networks,
which form the foundational approach of our research in
integrating two views into a cohesive dual-stream model.

In a foundational study on multi-view networks for Human
Action Recognition (HAR), Wang et al. [18] developed an
approach using deep dual-stream Convolutional Networks
(ConvNets). They complemented this with Fisher vector-
encoded Improved Dense Trajectories (IDT) features [19].
In their methodology, temporal features were processed in
a distinct stream. This approach yielded highly effective
results, marking a significant advancement in the field of
HAR.

Karpathy et al. [20] made significant contributions to
the fusion aspect of multi-stream networks. Their research
delineates that in multi-stream network architectures, the in-
tegration of results from different streams can be categorised
into four main approaches: early fusion, mid-level fusion,
late fusion, and lateral fusion. In early fusion, features from
multiple streams are combined at an initial stage before
they are inputted into the network for final classification.
Mid-level fusion involves merging intermediate features from
each stream at a midpoint in the process, before making the
final prediction. Late fusion, on the other hand, employs a
weighted average of predictions from each stream to arrive at
the final result. Lastly, lateral fusion operates by processing
the streams in parallel while intermittently sharing features
or information between them.

In a subsequent study by Wang et al. [21], they further
advanced Human Action Recognition (HAR) using ’very
deep dual-stream ConvNets’. This approach was inspired by
prominent models such as GoogLeNet and VGGNet. Their
focus was on dual-stream processing, specifically for video
frames and motion data. They implemented various strate-
gies aimed at preventing overfitting, particularly in smaller
datasets. Additionally, they enhanced the Caffe toolbox to
boost overall performance. Their findings demonstrated that
dual-stream models are particularly effective, even in scenar-
ios involving smaller datasets. This insight was a significant
contribution to the field of HAR.

Feichtenhofer et al. [22] conducted a detailed explo-
ration of various fusion methods to enhance Human Action
Recognition (HAR) in videos using Convolutional Networks.
They discovered that fusing features at the convolutional
layer, rather than at the softmax layer, maintained high-
performance levels while utilising fewer parameters. Further-
more, they noted that combining features at both the final
convolutional layer and the class prediction layer signifi-
cantly improved accuracy. Their experiments also included

temporal fusion methods such as 3D pooling and 3D filtering,
which resulted in better recognition accuracy. By integrating
this Convolutional-based approach with Improved Dense
Trajectories (IDT) handcrafted features through late fusion,
their method exceeded the performance of both the original
dual-stream model and other existing techniques, marking a
notable advancement in the field.

Wang et al. [23] addressed a key limitation of tra-
ditional dual-stream Convolutional Networks (ConvNets),
which struggled to capture complex spatial and temporal
information effectively. To overcome this challenge, they
developed the Spatiotemporal Pyramid Network, a novel ap-
proach in the field. This network incorporates a unique Spa-
tiotemporal Compact Bilinear (STCB) operator. The STCB
operator is designed to fuse spatial and temporal features
more efficiently. The results from their study demonstrated
that the Spatiotemporal Pyramid Network surpasses the per-
formance of previous methods in Human Action Recognition
(HAR), showcasing its effectiveness in handling intricate
spatiotemporal data.

Feichtenhofer et al. [24] were pioneers in integrating
deep Residual Networks (ResNets) into multi-stream net-
works. They introduced an innovative Convolutional Net-
works (ConvNets) architecture specifically tailored for video-
based Human Action Recognition (HAR). This architecture
marked a significant departure from traditional dual-stream
designs, focusing instead on multiplicative spacetime feature
interactions. Central to their model is the use of deep
ResNets, which are further enhanced through the incor-
poration of cross-stream residual connections. This novel
approach represented a key advancement in the field, offer-
ing a more sophisticated method for handling the complex
demands of video-based HAR.

Zhu et al. [25] introduced a groundbreaking approach
to decrease the computational burden associated with ex-
tracting temporal features in Human Action Recognition
(HAR). They developed a novel Convolutional Neural Net-
work (CNN) architecture known as ”hidden dual-stream
networks.” This innovative architecture is designed to capture
motion between video frames directly. A key advantage of
this method is that it eliminates the need for pre-computed
optical flow, thereby allowing for end-to-end training of the
network. The results of their study were significant, demon-
strating that this approach could outperform leading methods
in real-time action recognition. This advancement not only
enhances efficiency but also opens up new possibilities for
real-time HAR applications.

Building on the findings of Karpathy [20] and addressing
the challenge of removing handcrafted temporal features,
Feichtenhofer et al. [12] made a significant contribution
with their development of the SlowFast networks for video
recognition. This innovative architecture consists of two
distinct pathways: a ’Slow’ pathway designed to capture
spatial details and a ’Fast’ pathway focused on temporal
motion. A key feature of this architecture is the incorporation
of lateral connections between these pathways, which facil-
itates a more effective integration of spatial and temporal



information. The performance of the SlowFast networks
was noteworthy, as they demonstrated superior capabilities,
achieving substantial accuracy improvements in video-based
Human Action Recognition (HAR). This approach marked a
significant advancement in the field, enhancing the efficiency
and effectiveness of HAR systems.

We hypothesise that the use of dual-stream networks, aug-
mented with the integration of static views from multiview
datasets such as RHM [6], can enhance the accuracy of
robot’s perspective in Human Action Recognition (HAR).
The Robot House Multi-View (RHM) dataset encompasses
four distinct perspectives: Front, Back, Ceiling (Omni), and
robot-views, incorporating a comprehensive collection of 14
classes across 6701 video clips for each view, culminating
in a total of 26,804 video clips across all views. Each
video clip spans a duration ranging from 1 to 5 seconds.
Notably, video clips bearing identical numerical identifiers
and class allocations are synchronized across the different
views, ensuring consistency in multi-view analysis.

To test this, we have built upon the dual-stream CNN
architecture established by Simonyan et al. [11], and the
lateral fusion techniques described by Karpathy et al. [20]
and Feichtenhofer et al. [12]. Central to our approach is
the incorporation of the foundational 3D CNN (C3D) model
by Tran et al. [26]. This integration has culminated in the
creation of a novel dual-stream model, which is elaborated
in Section III of our research. This model represents a
significant step forward in the application of dual-stream
networks for improving robotic perception in HAR scenarios.

III. METHODOLOGY

In our research, we have innovated a new dual-stream
model by integrating key architectural concepts from the
domain of Human Action Recognition. The foundational
structure of our model is based on the Convolutional 3D
(C3D) model. We use the C3D model to generate both
streams in our dual-stream framework. A crucial aspect of
our model is the incorporation of lateral connections between
these streams. These lateral connections are instrumental
in facilitating an efficient exchange of information between
the streams, thereby enriching each stream with insights
gained from the other. For the fusion process within the
lateral connections, we employ concatenation. This method
of integration has proven effective in enhancing the overall
performance of the model. The total number of parameters
in this newly developed dual-stream model is approximately
92.81 million, reflecting the complexity and robustness of
the architecture.

The detailed architecture of our dual-stream C3D model is
depicted in Figure 1. This illustration provides a visual repre-
sentation of the model’s structure, showcasing the integration
of the two streams and the implementation of lateral connec-
tions. Additionally, specific information regarding the model
is presented in Table I. This table includes comprehensive
details about the model, such as the number of parameters
and the configurations of various layers.

The details of the Figure 1 are as follow:

TABLE I
DUAL-STREAM C3D MODEL DESCRIPTION, ’I’ REPRESENTS THE

INPUT TO EACH LAYER. ’O’ DENOTES THE OUTPUT, INDICATING THE

NUMBER OF FILTERS IN THE LAYER. ’K’ REFERS TO THE KERNEL SIZE.
’P’ ILLUSTRATES THE PADDING SIZE, AND ’S’ SIGNIFIES THE STRIDE

SIZE OF EACH LAYER.

Stage First Stream Second Stream
Data Layer 16*112*112 16*112*112

Conv1
I=3, O=32

K=(3,3,3), P=(1,1,1)
I=3, O=32

k=(3,3,3), p=(1,1,1)
pool1 K=(1,2,2), S=(1,2,2) K=(1,2,2), S=(1,2,2)

Conv2
I=32, O=64

K=(3,3,3), P=(1,1,1)
I=64, O=64

K=(3,3,3), P=(1,1,1)
pool2 K=(2,2,2), S=(2,2,2) K=(2,2,2), S=(2,2,2)

Conv3a
I=64, O=128

K=(3,3,3), P=(1,1,1)
I=128, O=128

K=(3,3,3), P=(1,1,1)

Conv3b
I=128, O=128

K=(3,3,3), P=(1,1,1)
I=128, O=128

K=(3,3,3), P=(1,1,1)
pool3 K=(2,2,2), S=(2,2,2) K=(2,2,2), S=(2,2,2)

Conv4a
I=128, O=256

K=(3,3,3), P=(1,1,1)
I=256, O=256

K=(3,3,3), P=(1,1,1)

Conv4b
I=256, O=256

K=(3,3,3), P=(1,1,1)
I=256, O=256

K=(3,3,3), P=(1,1,1)
pool4 K=(2,2,2), S=(2,2,2) K=(2,2,2), S=(2,2,2)

Conv5a
I=256, O=256

K=(3,3,3), P=(1,1,1)
I=512, O=512

K=(3,3,3), P=(1,1,1)

Conv5b
I=256, O=256

K=(3,3,3), P=(1,1,1)
I=512, O=512

K=(3,3,3), P=(1,1,1)
pool5 K=(2,2,2), S=(2,2,2) K=(2,2,2), S=(2,2,2)
Concatenate & FC6 & FC7 Classes

• The network is composed of two streams: the upper
stream (first stream) and the lower stream (second
stream).

• Convolution layers are represented by yellow boxes
within each stream.

• Padding layers are indicated by orange boxes.
• The network includes two fully connected layers and

softmax layers for classification tasks.
• Lateral connections between the streams feature con-

catenation fusion for integrating information.

IV. EXPERIMENTS AND RESULTS

To investigate the effect of integrating multi-view data
with a robot perspective on the dual-stream C3D model,
a series of experiments was conducted. The primary goal
of these experiments was to enhance the performance of
the robot view. Consequently, all experimental designs were
centred around this perspective.

Initially, the proposed model underwent evaluation using
a combination of different views alongside the robot view.
This step was crucial to assess how various perspectives
complement the robot view within the model. In addition, to
gain a deeper understanding of the impact of multi-view data
on dual-stream models, we conducted tests that focused on
spatial input data. This approach was chosen to specifically
exclude the influence of temporal information. Therefore, in
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Fig. 1. Dual-Stream C3D Network Architecture, This design includes an upper (first) and a lower (second) stream. Key features are yellow-boxed
convolution layers and orange-boxed padding layers. The architecture integrates two fully connected softmax layers for classification. Lateral connections
with concatenation fusion link the streams.

this phase of testing, only spatial frames were used in both
streams of the model.

To thoroughly compare the impact of multi-view data on
dual-stream networks and to rigorously evaluate our pro-
posed model, we conducted a series of identical experiments
with well-established models: the dual-stream ConvNet [11]
and the SlowFast model [12].

For these comparative experiments, we used the Robot
House Multiview (RHM) dataset, ensuring consistency
across all tests. The training parameters were standardised for
all models to ensure a fair comparison. We set a batch size
of 30 and a frame count of 16 for processing. The learning
rate was fixed at 0.0001, and we employed the Stochastic
Gradient Descent (SGD) optimiser for training.

In terms of performance evaluation, we chose top-1 and
top-5 accuracy as our primary metrics. These metrics are
widely recognised in the field and provide a clear measure
of the model’s ability to accurately classify actions from
the provided data. By using these standardised settings and
evaluation criteria, we aimed to achieve a comprehensive
and objective comparison of the models’ performances in
handling multi-view data, particularly focusing on the en-
hancement offered by our proposed dual-stream C3D model.

A. Single views input
In our initial experiments, we tested the dual-stream model

using identical frames in both streams to understand its
effect on each view and establish a reference for the impact
of multi-view data. We employed specific viewpoint pairs
including robot-robot, front-front, back-back, and top-top

configurations, allowing us to analyse the model’s perfor-
mance under viewpoint uniformity. These tests were crucial
for assessing the baseline capabilities of the dual-stream
model before introducing multi-view variations. The results
of these experiments, which provide insights into the model’s
performance with uniform viewpoints, are compiled in Table
II. This data serves as a foundational reference for further
multi-view impact analysis on the dual-stream model.

The experimental results demonstrate that our dual-stream
C3D model significantly outperforms the original single-
stream C3D model, as detailed in [6], in both Top-1 and
Top-5 accuracy metrics across various viewpoints. Notably,
for the Robot view, the dual-stream C3D model exhibits a
remarkable 10% increase in Top-1 accuracy. Similarly, there
is a 1% increase in Top-1 accuracy for the Front view, a 1%
rise for the Back view, and a 2% improvement for the Top
view.

Furthermore, the proposed dual-stream C3D model shows
superior performance in all viewpoints compared to other
models, as outlined in Table II. It surpasses the SlowFast
model by a significant margin of more than 15% and exhibits
an improvement of over 5% compared to the dual-stream
ConvNet model across all views. Interestingly, the Front
view consistently yielded the highest results, while the Robot
view recorded the lowest performance in all three models,
providing valuable insights into viewpoint-specific model
efficacy.



TABLE II
PERFORMANCE OF DUAL-STREAM MODELS FOR IDENTICAL VIEWPOINTS IN THE RHM DATASET. IN THIS SETUP, BOTH STREAMS OF THE

DUAL-STREAM MODEL (∗ DS: DUAL-STREAM) PROCESS THE SAME FRAME FROM THE SAME VIEWPOINT. THE INPUT FRAMES ARE SPATIAL,
REPRESENTING NORMAL VISUAL DATA.

Inputs SlowFast (101) DS∗ ConvNet DS∗ C3D
Second stream First stream Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Robot View Robot View 42.24 88.19 48.26 89.02 54.91 89.16
Front View Front View 58.63 95.43 63.82 96.38 68.05 98.26
Back View Back View 57.87 95.68 62.59 96.27 67.13 98.17
Top View Top View 54.39 95.39 60.44 95.98 64.80 97.17

TABLE III
RESULTS OF THE DUAL-STREAM MODEL WITH MULTI-VIEW INPUT. IN THIS CONFIGURATION, EACH STREAM OF THE DUAL-STREAM MODEL (∗

DS: DUAL-STREAM) PROCESSES THE SAME FRAME NUMBER, BUT FROM DIFFERENT CAMERA VIEWPOINTS. THE FRAMES USED ARE NORMAL,
INDICATING THAT THEY CONSIST OF SPATIAL DATA. THE TABLE COMPARES THE PERFORMANCE OF THREE DIFFERENT MODELS UNDER THESE

CONDITIONS.

Inputs SlowFast (101) DS∗ ConvNet DS∗ C3D
Second stream First stream Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

Front View Robot View 45.28 91.31 62.77 94.51 71.06 98.14
Back View Robot View 44.69 90.64 61.02 93.89 66.25 97.17
Top View Robot View 44.91 87.75 59.76 92.21 67.91 97.2

Robot View Front View 41.86 89.95 58.77 91.98 65.09 95.95
Robot View Back View 40.87 88.59 57.51 91.70 62.7 94.42
Robot View Top View 40.27 88.02 56.68 90.79 64.6 95.7

B. Multi-views input

Intending to assess the impact of multi-view data on dual-
stream models, especially in terms of enhancing robot view
performance, we methodically designed our experiments to
incorporate the robot view.

In our first experimental series, the dual-stream model was
configured with the robot view as the primary stream. This
configuration tested combinations such as robot-front, robot-
back, and robot-top pairings. The intent was to understand
how the robot view interacts and contributes to the overall
performance when it is the leading perspective in the model.

Subsequently, in our second series of experiments, we
shifted the robot view to the secondary stream. This change
in setup included pairing combinations like front-robot, back-
robot, and top-robot. This arrangement allowed us to evaluate
the model’s performance when the robot view complements
the primary view.

The results from both experimental series are comprehen-
sively compiled in Table III. This table provides a detailed
overview of the performance of each viewpoint pairing.
It specifically highlights how the integration of the robot
view in various configurations influences the accuracy of the
models, including the SlowFast, dual-stream ConvNet, and
our dual-stream C3D models. These results are instrumental
in understanding the effectiveness of multi-view data in en-
hancing the performance of dual-stream models, particularly
from a robot-centric perspective.

The results from our experiments demonstrate that the
inclusion of additional viewpoints as separate streams in the
dual-stream model significantly enhances the accuracy of the
Robot View. In all six viewpoint combinations, there was a
notable improvement in the performance of the Robot View

within the dual-stream framework. Particularly striking was
the increase in accuracy when the Robot View served as the
primary stream, fused with other views. This finding suggests
that the additional information provided by the multi-view
setup strengthens the model’s capacity to distinguish between
different actions.

However, when the Robot View was configured as the
secondary stream, there was a relative decrease in accuracy
compared to the setups where it was the primary input. This
observation implies that the contribution of the Robot View’s
information as a secondary input has a lesser impact on the
overall model performance.

In every pairwise comparison conducted, our dual-stream
C3D model consistently outperformed the SlowFast and
dual-stream ConvNet models. Notably, the dual-stream C3D
model achieved a Top-1 accuracy that was over 10% higher
than that of the SlowFast model and surpassed the dual-
stream ConvNet model by more than 5% across all viewpoint
pairings.

The Robot-Front combination emerged as the most ef-
fective pairing, consistently yielding the highest results in
both Top-1 and Top-5 accuracy metrics. The most impressive
performance was observed with the dual-stream C3D model
in the Robot-Front configuration, achieving a Top-1 accuracy
of 71.06% and a Top-5 accuracy of 98.14%. These results
underscore the effectiveness of the dual-stream C3D model,
particularly when leveraging the Robot View in combination
with other viewpoints.

V. CONCLUSION & FUTURE WORK

In conclusion, this study has substantiated the substantial
benefits of integrating multi-view data into dual-stream mod-



els for Human Action Recognition (HAR), with a particular
focus on enhancing the performance of the robot view.
The inclusion of additional viewpoints as separate streams
has been demonstrated to markedly improve the accuracy
of the Robot View across various configurations. Notably,
when the Robot View is positioned as the primary stream,
it significantly enhances the model’s ability to distinguish
actions, indicating the effectiveness of this arrangement in
leveraging multi-view data. Conversely, the study also reveals
that the positioning of the Robot View as a secondary stream
results in a relative decrease in accuracy, highlighting the
importance of its role and placement within the model.
Among the models compared, the dual-stream C3D model
consistently outperforms alternatives like the SlowFast and
dual-stream ConvNet models, evidencing its robustness and
superior capability in handling multi-view data in HAR
tasks. Furthermore, the combination of the Robot View with
the Front View has been identified as the most effective,
consistently yielding superior results in both Top-1 and Top-
5 accuracy metrics. This optimal pairing, especially with the
dual-stream C3D model, underscores the model’s potential
for practical applications in robot-enhanced environments.

Overall, the findings from this research provide significant
insights into the application of multi-view data in robotic
vision, emphasising the potential of the dual-stream C3D
model in enhancing robot view performance. These insights
are poised to inform future advancements in the field of
robotic vision and HAR, contributing to the development
of more sophisticated and accurate robotic systems across
various domains.

In future research, there are two promising directions to
explore for enhancing multi-view models in Human Action
Recognition (HAR). The first involves leveraging temporal
information from static views, aiming to unearth new layers
of data that could improve the accuracy of multi-view
models. This approach would focus on extracting dynamic
elements from seemingly static images, potentially leading
to more sophisticated recognition capabilities. The second
area of exploration is the exclusive focus on the robot view
dataset, developing deep learning models that rely solely
on this perspective. Such an approach would concentrate
on optimizing the unique insights provided by robotic per-
ception, potentially leading to significant advancements in
autonomous systems and a deeper understanding of robot-
centric HAR. These two paths represent distinct but comple-
mentary strategies for advancing the field of robotic vision
and action recognition.
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